
Low End-to-End Latency atop a Speculative
Shared Log with Fix-Ante Ordering

University of Illinois Urbana-Champaign

Shreesha G.

Bhat

Tony Hong Xuhao Luo Jiyu Hu Ram

Alagappan

Aishwarya

Ganesan

Current Shared Logs → High App End-to-End Latency

2

Current Shared Logs → High App End-to-End Latency

Shared logs are widely used by today’s real-time,
data-driven applications producerproducer

appendappend

consumer

read

Downstream Upstream

durable and ordered sequence

2

Current Shared Logs → High App End-to-End Latency

Shared logs are widely used by today’s real-time,
data-driven applications

Well studied: Corfu, Scalog, Boki, LazyLog…

producerproducer

appendappend

consumer

read

Downstream Upstream

durable and ordered sequence

2

Current Shared Logs → High App End-to-End Latency

Shared logs are widely used by today’s real-time,
data-driven applications

Well studied: Corfu, Scalog, Boki, LazyLog…

State-of-the-art shared logs incur high delivery
latencies

producerproducer

appendappend

consumer

read

Downstream Upstream

Log

consume

delivery latency

produce

durable and ordered sequence

2

Current Shared Logs → High App End-to-End Latency

Shared logs are widely used by today’s real-time,
data-driven applications

Well studied: Corfu, Scalog, Boki, LazyLog…

State-of-the-art shared logs incur high delivery
latencies

high delivery latency → high end-to-end latency

producerproducer

appendappend

consumer

read

Downstream Upstream

Log

consume

delivery latency

produce compute

end-to-end latency

durable and ordered sequence

2

Current Shared Logs → High App End-to-End Latency

Shared logs are widely used by today’s real-time,
data-driven applications

Well studied: Corfu, Scalog, Boki, LazyLog…

State-of-the-art shared logs incur high delivery
latencies

high delivery latency → high end-to-end latency

producerproducer

appendappend

consumer

read

Downstream Upstream

Log

consume

delivery latency

produce compute

end-to-end latency

durable and ordered sequence

Cause: expensive ordering before record

delivery

2

The SpecLog Abstraction and Fix-Ante Ordering

3

The SpecLog Abstraction and Fix-Ante Ordering

We note an opportunity for speculative execution

3

SpecLog Abstraction

Allow speculative consumption of records by predicting order

Overlap ordering and application compute

Confirm the order after compute

The SpecLog Abstraction and Fix-Ante Ordering

We note an opportunity for speculative execution

3

SpecLog Abstraction

Allow speculative consumption of records by predicting order

Overlap ordering and application compute

Confirm the order after compute

The SpecLog Abstraction and Fix-Ante Ordering

We note an opportunity for speculative execution

Fix-Ante Ordering

Predetermine the global order for easy prediction

Make system adhere to that order

High

speculation

success!

3

Contributions

• SpecLog – A new speculative shared log abstraction, uses fix-ante ordering to
enable near perfect speculation

• Belfast – Implementation of SpecLog abstraction and fix-ante ordering

• Addresses practical challenges that arise in implementing fix-ante ordering

• Enables low e2e latency while retaining benefits and guarantees of today’s shared logs

• E2E latency benefits in end applications like fraud detection, intrusion detection
and high-frequency trading

4

Outline

• Introduction

• Motivation

• SpecLog Abstraction and Interface

• Belfast – An Implementation of SpecLog

• Evaluation

5

Shared Logs

6

Shared Logs

Expose simple interface

pos_t append(record_t r);
record_t read(pos_t pos);
// streaming records

stream<record_t> subscribe(pos_t start);

6

Shared Logs

Expose simple interface

Durable & linearizably ordered records
• Respect real-time order of appends

pos_t append(record_t r);
record_t read(pos_t pos);
// streaming records

stream<record_t> subscribe(pos_t start);

6

Shared Logs

Expose simple interface

Durable & linearizably ordered records
• Respect real-time order of appends

pos_t append(record_t r);
record_t read(pos_t pos);
// streaming records

stream<record_t> subscribe(pos_t start);

time

A

6

Shared Logs

Expose simple interface

Durable & linearizably ordered records
• Respect real-time order of appends

pos_t append(record_t r);
record_t read(pos_t pos);
// streaming records

stream<record_t> subscribe(pos_t start);

time

A
B

6

Shared Logs

Expose simple interface

Durable & linearizably ordered records
• Respect real-time order of appends

pos_t append(record_t r);
record_t read(pos_t pos);
// streaming records

stream<record_t> subscribe(pos_t start);

time

A B

log order

A
B

6

Shared Logs

Expose simple interface

Durable & linearizably ordered records
• Respect real-time order of appends

Store records over multiple storage shards

Shard 2

primary backup

Shard 1

primary backup

pos_t append(record_t r);
record_t read(pos_t pos);
// streaming records

stream<record_t> subscribe(pos_t start);

time

A B

log order

A
B

6

Shared Logs

Expose simple interface

Durable & linearizably ordered records
• Respect real-time order of appends

Store records over multiple storage shards

• Total order of records across shards

Shard 2

primary backup

Shard 1

primary backup

pos_t append(record_t r);
record_t read(pos_t pos);
// streaming records

stream<record_t> subscribe(pos_t start);

time

A B

log order

A
B

6

State-of-the-art – Durability-First Shared Logs (Scalog)

7

State-of-the-art – Durability-First Shared Logs (Scalog)

Durability first – appended records first made durable

Shard 1

Shard 2

client

7

State-of-the-art – Durability-First Shared Logs (Scalog)

Durability first – appended records first made durable

Shard 1

Shard 2

client

7

State-of-the-art – Durability-First Shared Logs (Scalog)

Durability first – appended records first made durable

Batched ordering – amortize cost of ordering through batching

Shard 1

Shard 2

Sequencer

client

7

State-of-the-art – Durability-First Shared Logs (Scalog)

Durability first – appended records first made durable

Batched ordering – amortize cost of ordering through batching

Shard 1

Shard 2

Sequencer

client

Paxos/Raft for FT

7

State-of-the-art – Durability-First Shared Logs (Scalog)

Durability first – appended records first made durable

Batched ordering – amortize cost of ordering through batching

Shard 1

Shard 2

Sequencer

Global Order
client

Paxos/Raft for FT

7

State-of-the-art – Durability-First Shared Logs (Scalog)

Durability first – appended records first made durable

Batched ordering – amortize cost of ordering through batching

Shard 1

Shard 2

Sequencer

Global Order
client

Paxos/Raft for FT

Flexible Data Placement Seamlessly Reconfigurable Scalablity

7

State-of-the-art – Durability-First Shared Logs (Scalog)

Durability first – appended records first made durable

Batched ordering – amortize cost of ordering through batching

Shard 1

Shard 2

Sequencer

Global Order
client

Paxos/Raft for FT

Flexible Data Placement Seamlessly Reconfigurable Scalablity

Similar designs adopted by Boki [SOSP’21], FlexLog [HPDC’23]

7

Problem: High Delivery Latency

Shard 1

primary backup

producer

Shard 2

primary backup

Shard 3

primary backup

Sequencing Layer

consumer

8

Problem: High Delivery Latency

Shard 1

primary backup

producer

1) append A

A

Shard 2

primary backup

Shard 3

primary backup

Sequencing Layer

consumer

8

Problem: High Delivery Latency

Shard 1

primary backup

producer

1) append A

A A

Shard 2

primary backup

Shard 3

primary backup

Sequencing Layer

consumer

8

Problem: High Delivery Latency

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

Sequencing Layer

2)
consumer

8

Problem: High Delivery Latency

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

Sequencing Layer

2)

3) <2> 3) <1> 3) <1>

consumer

<2> shard report

Note:

Shard reports <L> imply a

local log length of L at

the shard

8

Problem: High Delivery Latency

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

[2, 1, 1]

Sequencing Layer

2)

3) <2> 3) <1> 3) <1>

consumer

<2> shard report

Note:

Shard reports <L> imply a

local log length of L at

the shard

8

Problem: High Delivery Latency

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

[2, 1, 1] [2, 1, 1]

Sequencing Layer

2)

3) <2> 3) <1> 3) <1>

[2, 1, 1]

4)

consumer

<2> shard report

Note:

Shard reports <L> imply a

local log length of L at

the shard

8

Problem: High Delivery Latency

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

[2, 1, 1] [2, 1, 1]

Sequencing Layer

2)

3) <2> 3) <1> 3) <1>

[2, 1, 1]

4) <2, 1, 1>

4)

consumer

<2> shard report

<2, 1, 1> global cut

Note:

Shard reports <L> imply a

local log length of L at

the shard

8

Problem: High Delivery Latency

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

[2, 1, 1] [2, 1, 1]

Sequencing Layer

2)

3) <2> 3) <1> 3) <1>

[2, 1, 1]

4) <2, 1, 1>

4)

consumer

0 1 0 1 2 2 3 3

<2> shard report

<2, 1, 1> global cut

Note:

Shard reports <L> imply a

local log length of L at

the shard

A B C D

0 1 2 3

1 2 3
shard lexicographic order

global positions

8

Problem: High Delivery Latency

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

[2, 1, 1] [2, 1, 1]

Sequencing Layer

2)

3) <2> 3) <1> 3) <1>

[2, 1, 1]

4) <2, 1, 1>

4)

consumer

5) deliver & ack A

0 1 0 1 2 2 3 3

<2> shard report

<2, 1, 1> global cut

Note:

Shard reports <L> imply a

local log length of L at

the shard

A B C D

0 1 2 3

1 2 3
shard lexicographic order

global positions

8

Problem: High Delivery Latency

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

[2, 1, 1] [2, 1, 1]

Sequencing Layer

2)

3) <2> 3) <1> 3) <1>

[2, 1, 1]

4) <2, 1, 1>

4)

consumer

5) deliver & ack A

0 1 0 1 2 2 3 3

Problem:

High record delivery

latency due to

expensive ordering

<2> shard report

<2, 1, 1> global cut

Note:

Shard reports <L> imply a

local log length of L at

the shard

A B C D

0 1 2 3

1 2 3
shard lexicographic order

global positions

8

consumerproducer

High Delivery Latency → High App E2E Latency

Log

consume

delivery latency

produce

time

9

consumerproducer

High Delivery Latency → High App E2E Latency

Log

consume

delivery latency

produce

time

expensive

ordering!

9

consumerproducer

High Delivery Latency → High App E2E Latency

Log

consume compute

delivery latency

produce

time

expensive

ordering!

9

consumerproducer

High Delivery Latency → High App E2E Latency

Log

consume compute expose results

delivery latency

produce

e2e latency

time

expensive

ordering!

9

consumerproducer

High Delivery Latency → High App E2E Latency

Fraud detection: consume txn → match w/ history (compute) → flag txn

Log

consume compute expose results

delivery latency

produce

e2e latency

time

expensive

ordering!

9

Latency Demands of Real-Time Applications

10

Latency Demands of Real-Time Applications

Many applications care about e2e latency

• Real-time analytics, high-frequency trading, fraud and intrusion detection systems

These apps demand a low delivery latency from the shared log

10

Latency Demands of Real-Time Applications

Many applications care about e2e latency

• Real-time analytics, high-frequency trading, fraud and intrusion detection systems

These apps demand a low delivery latency from the shared log

2023 streaming report by RedPanda

 ~35% practitioners primarily care about delivery latency of

their streaming system

10

Outline

• Introduction

• Motivation

• SpecLog Abstraction and Interface

• Belfast – An Implementation of SpecLog

• Evaluation

11

An Opportunity for Speculation in Shared Logs

SpecLog identifies opportunity for speculative execution

Effectively overlaps global ordering with application compute → low end-to-end
latency

consumer

durability Log Stages
batched global

ordering

producer

produce

12

An Opportunity for Speculation in Shared Logs

SpecLog identifies opportunity for speculative execution

Effectively overlaps global ordering with application compute → low end-to-end
latency

consumer

durability Log Stages
batched global

ordering

producer

produce

12

An Opportunity for Speculation in Shared Logs

SpecLog identifies opportunity for speculative execution

Effectively overlaps global ordering with application compute → low end-to-end
latency

consumer

consume

durability Log Stages
batched global

ordering

producer

produce

12

An Opportunity for Speculation in Shared Logs

SpecLog identifies opportunity for speculative execution

Effectively overlaps global ordering with application compute → low end-to-end
latency

consumer

consume compute

durability Log Stages
batched global

ordering

producer

produce

12

An Opportunity for Speculation in Shared Logs

SpecLog identifies opportunity for speculative execution

Effectively overlaps global ordering with application compute → low end-to-end
latency

consumer

consume compute

durability Log Stages
batched global

ordering

producer

produce

12

An Opportunity for Speculation in Shared Logs

SpecLog identifies opportunity for speculative execution

Effectively overlaps global ordering with application compute → low end-to-end
latency

consumer

consume compute

durability Log Stages
batched global

ordering

producer

produce

12

An Opportunity for Speculation in Shared Logs

SpecLog identifies opportunity for speculative execution

Effectively overlaps global ordering with application compute → low end-to-end
latency

consumer

consume compute expose results

durability Log Stages
batched global

ordering

producer

produce

12

SpecLog – Abstraction and Interface

Abstraction Interface

13

SpecLog – Abstraction and Interface

Abstraction

SpecLog appends return after
global ordering

Interface

// append to shard; return position of record in log

pos_t append(record_t r, sid_t shard);

13

SpecLog – Abstraction and Interface

Abstraction

SpecLog appends return after
global ordering

SpecLog allows speculative
consumption of records

Interface

// append to shard; return position of record in log

pos_t append(record_t r, sid_t shard);

// speculatively consume records after start

stream<record_t> subscribe(pos_t start);

13

SpecLog – Abstraction and Interface

Abstraction

SpecLog appends return after
global ordering

SpecLog allows speculative
consumption of records

SpecLog confirms or fails
speculation

Interface

// append to shard; return position of record in log

pos_t append(record_t r, sid_t shard);

// speculatively consume records after start

stream<record_t> subscribe(pos_t start);

// callbacks for confirmations and mis-spec

void confirm_spec(pos_t upto);

void fail_spec(pos_t after);

New interface callbacks

13

SpecLog – Abstraction and Interface

Impact to Apps Interface

// append to shard; return position of record in log

pos_t append(record_t r, sid_t shard);

// speculatively consume records after start

stream<record_t> subscribe(pos_t start);

// callbacks for confirmations and mis-spec

void confirm_spec(pos_t upto);

void fail_spec(pos_t after);

New interface callbacks

14

SpecLog – Abstraction and Interface

Impact to Apps

Apps listen to confirmations
and mis-speculations

Interface

// append to shard; return position of record in log

pos_t append(record_t r, sid_t shard);

// speculatively consume records after start

stream<record_t> subscribe(pos_t start);

// callbacks for confirmations and mis-spec

void confirm_spec(pos_t upto);

void fail_spec(pos_t after);

New interface callbacks

14

SpecLog – Abstraction and Interface

Impact to Apps

Apps listen to confirmations
and mis-speculations

Upon confirm_spec(k) →
expose compute results till k

Interface

// append to shard; return position of record in log

pos_t append(record_t r, sid_t shard);

// speculatively consume records after start

stream<record_t> subscribe(pos_t start);

// callbacks for confirmations and mis-spec

void confirm_spec(pos_t upto);

void fail_spec(pos_t after);

New interface callbacks

14

SpecLog – Abstraction and Interface

Impact to Apps

Apps listen to confirmations
and mis-speculations

Upon confirm_spec(k) →
expose compute results till k

Upon fail_spec(k) →
rollback state until k and
recompute

Interface

// append to shard; return position of record in log

pos_t append(record_t r, sid_t shard);

// speculatively consume records after start

stream<record_t> subscribe(pos_t start);

// callbacks for confirmations and mis-spec

void confirm_spec(pos_t upto);

void fail_spec(pos_t after);

New interface callbacks

14

Challenge – Prediction is Hard

Hard to predict position in global order

Shard 1

primary backup

Shard 2

primary backup

Shard 3

primary backup

Sequencing Layer

15

Challenge – Prediction is Hard

Hard to predict position in global order

Shard 1

primary backup

A A

Shard 2

primary backup

Shard 3

primary backup

B B C C

<1> <1> <1>

<1, 1, 1>

Sequencing Layer

15

Challenge – Prediction is Hard

Hard to predict position in global order

Shard 1

primary backup

A A

Shard 2

primary backup

Shard 3

primary backup

B B C C

<1> <1> <1>

<1, 1, 1>

Sequencing Layer

A B C

0 1 2

global positions

15

Challenge – Prediction is Hard

Hard to predict position in global order

Shard 1

primary backup

A ? ?A

Shard 2

primary backup

Shard 3

primary backup

B B C C

<2> <2> <2>

<2, 2, 2>

Sequencing Layer

F F ? ?

Prediction using

previous reports

previous global cut: <1, 1, 1>

predicted cut: <2, 2, 2>

16

Challenge – Prediction is Hard

Hard to predict position in global order

Shard 1

primary backup

A ? ?A

Shard 2

primary backup

Shard 3

primary backup

B B C C

<2> <2> <2>

<2, 2, 2>

Sequencing Layer

F F ? ?

A B C ? F

0 1 2 3 4 5

? predicted global position of F: 4

Prediction using

previous reports

previous global cut: <1, 1, 1>

predicted cut: <2, 2, 2>

16

Challenge – Prediction is Hard

Hard to predict position in global order

Shard 1

primary backup

AD DA

Shard 2

primary backup

Shard 3

primary backup

B B C C

<3> <2> <2>

<3, 2, 2>

Sequencing Layer

E E F F G G

A B C ? F

0 1 2 3 4 5

? predicted global position of F: 4

previous global cut: <1, 1, 1>

predicted cut: <2, 2, 2>

actual cut: <3, 2, 2>

17

Challenge – Prediction is Hard

Hard to predict position in global order

Shard 1

primary backup

AD DA

Shard 2

primary backup

Shard 3

primary backup

B B C C

<3> <2> <2>

<3, 2, 2>

Sequencing Layer

E E F F G G

A B C ? F

0 1 2 3 4 5

? predicted global position of F: 4

previous global cut: <1, 1, 1>

predicted cut: <2, 2, 2>

actual cut: <3, 2, 2>

17

Challenge – Prediction is Hard

Hard to predict position in global order

Shard 1

primary backup

AD DA

Shard 2

primary backup

Shard 3

primary backup

B B C C

<3> <2> <2>

<3, 2, 2>

Sequencing Layer

actual global position of F: 5

E E

A B CD E

0 1 2 3 4 5 6

F F G G

F GA B C ? F

0 1 2 3 4 5

? predicted global position of F: 4

previous global cut: <1, 1, 1>

predicted cut: <2, 2, 2>

actual cut: <3, 2, 2>

17

Challenge – Prediction is Hard

Hard to predict position in global order

Shard 1

primary backup

AD DA

Shard 2

primary backup

Shard 3

primary backup

B B C C

<3> <2> <2>

<3, 2, 2>

Sequencing Layer

actual global position of F: 5

E E

A B CD E

Challenge:

Hard to predict positions

when shards have free will to

report as many records as

they like

0 1 2 3 4 5 6

F F G G

F GA B C ? F

0 1 2 3 4 5

? predicted global position of F: 4

previous global cut: <1, 1, 1>

predicted cut: <2, 2, 2>

actual cut: <3, 2, 2>

17

Idea – Fix-Ante Ordering

18

Idea – Fix-Ante Ordering

predetermined cuts – fix beforehand global cuts system is expected to produce

18

Idea – Fix-Ante Ordering

predetermined cuts – fix beforehand global cuts system is expected to produce

quota – fixed number of records in each shard report

18

Idea – Fix-Ante Ordering

predetermined cuts – fix beforehand global cuts system is expected to produce

quota – fixed number of records in each shard report

Sequencing layer waits for predetermined cut before sending global cut

18

Idea – Fix-Ante Ordering

predetermined cuts – fix beforehand global cuts system is expected to produce

quota – fixed number of records in each shard report

Sequencing layer waits for predetermined cut before sending global cut

Shard 1

primary backup

Shard 2

primary backup

Shard 3

primary backup

18

Idea – Fix-Ante Ordering

predetermined cuts – fix beforehand global cuts system is expected to produce

quota – fixed number of records in each shard report

Sequencing layer waits for predetermined cut before sending global cut

Shard 1

primary backup

Shard 2

primary backup

Shard 3

primary backup

Quota: 2 Quota: 1 Quota: 1

18

Idea – Fix-Ante Ordering

predetermined cuts – fix beforehand global cuts system is expected to produce

quota – fixed number of records in each shard report

Sequencing layer waits for predetermined cut before sending global cut

Predetermined cuts - <2, 1, 1> <4, 2, 2> <6, 3, 3> … <2n, n, n>

Shard 1

primary backup

Shard 2

primary backup

Shard 3

primary backup

Quota: 2 Quota: 1 Quota: 1

18

Idea – Fix-Ante Ordering

Each shard knows the sequence of global cuts the system will produce

Any shard can predict positions of its records easily!

Shard 1

primary backup

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

Quota: 2 Quota: 1 Quota: 1

19

Idea – Fix-Ante Ordering

Each shard knows the sequence of global cuts the system will produce

Any shard can predict positions of its records easily!

Shard 1

primary backup

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

Shard 2 can easily predict C’s position to be 2

Quota: 2 Quota: 1 Quota: 1

? ? C ?

0 1 2 3

19

Idea – Fix-Ante Ordering

Each shard knows the sequence of global cuts the system will produce

Any shard can predict positions of its records easily!

Shard 1

primary backup

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

Shard 2 can easily predict C’s position to be 2

Quota: 2 Quota: 1 Quota: 1

? ? C ?

E E

0 1 2 3

What if a shard has more

records to report?

20

Idea – Fix-Ante Ordering

Each shard knows the sequence of global cuts the system will produce

Any shard can predict positions of its records easily!

Shard 1

primary backup

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

Shard 2 can easily predict C’s position to be 2

Quota: 2 Quota: 1 Quota: 1

? ? C ?

E E

delayed to subsequent report

0 1 2 3

What if a shard has more

records to report?

Solution:

Delay to subsequent reports

20

Idea – Fix-Ante Ordering

Each shard knows the sequence of global cuts the system will produce

Any shard can predict positions of its records easily!

Shard 1

primary backup

A A

Shard 2

primary backup

Shard 3

primary backup

C C D D

Shard 2 can easily predict C’s position to be 2

Quota: 2 Quota: 1 Quota: 1

? ? C ?

0 1 2 3

What if a shard has more

records to report?

Solution:

Delay to subsequent reports

What if a shard does not

have enough records?

21

Idea – Fix-Ante Ordering

Each shard knows the sequence of global cuts the system will produce

Any shard can predict positions of its records easily!

Shard 1

primary backup

A A

Shard 2

primary backup

Shard 3

primary backup

C C D D

Shard 2 can easily predict C’s position to be 2

Quota: 2 Quota: 1 Quota: 1

? ? C ?

no-ops to fill remaining quota

0 1 2 3

What if a shard has more

records to report?

Solution:

Delay to subsequent reports

What if a shard does not

have enough records?

Solution:

Pad quota with no-ops

21

If Predetermined, Why Speculate!?

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

If not → speculation fails

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

If not → speculation fails

Cases:

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

If not → speculation fails

Cases:

primary backup

shard internal failure

shard reports

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

If not → speculation fails

Cases:

primary backup

shard internal failure

shard reports

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

If not → speculation fails

Cases:

primary backup

shard internal failure

shard reports

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

If not → speculation fails

Cases:

primary backup

shard internal failure

shard reports

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

If not → speculation fails

Cases:

primary backup

shard internal failure

No mis-speculation

Shard can internally mask failures!

shard reports

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

If not → speculation fails

Cases:

primary backup

shard internal failure

No mis-speculation

Shard can internally mask failures!

shard reports

primary backup

whole shard failure

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

If not → speculation fails

Cases:

primary backup

shard internal failure

No mis-speculation

Shard can internally mask failures!

shard reports

primary backup

whole shard failure

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

If not → speculation fails

Cases:

primary backup

shard internal failure

No mis-speculation

Shard can internally mask failures!

shard reports

primary backup

whole shard failure

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

If not → speculation fails

Cases:

primary backup

shard internal failure

No mis-speculation

Shard can internally mask failures!

shard reports

primary backup

whole shard failure

Mis-speculations occur

Shard cannot meet quota

22

If Predetermined, Why Speculate!?

If shards meet quota, predetermined order same as actual global order

In this case → speculation succeeds

If not → speculation fails

Cases:

primary backup

shard internal failure

No mis-speculation

Shard can internally mask failures!

shard reports

primary backup

whole shard failure

Mis-speculations occur

Shard cannot meet quota

Rare!

22

Real-Time App atop SpecLog

Shard 1

primary backup

producer

Shard 2

primary backup

Shard 3

primary backup

consumer

23

Real-Time App atop SpecLog

Shard 1

primary backup

producer

Shard 2

primary backup

Shard 3

primary backup

consumer

Quota: 2 Quota: 1 Quota: 1

23

Real-Time App atop SpecLog

Shard 1

primary backup

producer

1) append A

A

Shard 2

primary backup

Shard 3

primary backup

consumer

Quota: 2 Quota: 1 Quota: 1

23

Real-Time App atop SpecLog

Shard 1

primary backup

producer

1) append A

A A

Shard 2

primary backup

Shard 3

primary backup

consumer

Quota: 2 Quota: 1 Quota: 1

23

Real-Time App atop SpecLog

Shard 1

primary backup

producer

1) append A

A A

Shard 2

primary backup

Shard 3

primary backup

consumer

2) speculative deliver A

Quota: 2 Quota: 1 Quota: 1

Deliver as soon as

record is durable by

speculating order

23

Real-Time App atop SpecLog

Shard 1

primary backup

producer

1) append A

A A

Shard 2

primary backup

Shard 3

primary backup

consumer

computation

progress bar

Quota: 2 Quota: 1 Quota: 1

Deliver as soon as

record is durable by

speculating order

23

Real-Time App atop SpecLog

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

3) consumer

computation

progress bar

Quota: 2 Quota: 1 Quota: 1

Deliver as soon as

record is durable by

speculating order

23

Real-Time App atop SpecLog

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

3)

4) <2> 4) <1> 4) <1>

consumer

computation

progress bar

Quota: 2 Quota: 1 Quota: 1

Deliver as soon as

record is durable by

speculating order

23

Real-Time App atop SpecLog

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

[2, 1, 1] [2, 1, 1]

Sequencing Layer

3)

4) <2> 4) <1> 4) <1>

[2, 1, 1]

5)

consumer

computation

progress bar

Quota: 2 Quota: 1 Quota: 1

Deliver as soon as

record is durable by

speculating order

23

Real-Time App atop SpecLog

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

[2, 1, 1] [2, 1, 1]

Sequencing Layer

3)

4) <2> 4) <1> 4) <1>

[2, 1, 1]

6) <2, 1, 1>

5)

consumer

computation

progress bar

Quota: 2 Quota: 1 Quota: 1

Deliver as soon as

record is durable by

speculating order

23

Real-Time App atop SpecLog

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

[2, 1, 1] [2, 1, 1]

Sequencing Layer

3)

4) <2> 4) <1> 4) <1>

[2, 1, 1]

6) <2, 1, 1>

5)

0 1 0 1 2 2 3 3

consumer

computation

progress bar

Quota: 2 Quota: 1 Quota: 1

Deliver as soon as

record is durable by

speculating order

23

Real-Time App atop SpecLog

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

[2, 1, 1] [2, 1, 1]

Sequencing Layer

3)

4) <2> 4) <1> 4) <1>

[2, 1, 1]

6) <2, 1, 1>

5)

0 1 0 1 2 2 3 3

consumer

computation

progress bar

7) confirm & ack A

Quota: 2 Quota: 1 Quota: 1

Deliver as soon as

record is durable by

speculating order

23

Real-Time App atop SpecLog

Shard 1

primary backup

producer

1) append A

A B BA

Shard 2

primary backup

Shard 3

primary backup

C C D D

[2, 1, 1] [2, 1, 1]

Sequencing Layer

3)

4) <2> 4) <1> 4) <1>

[2, 1, 1]

6) <2, 1, 1>

5)

0 1 0 1 2 2 3 3

consumer

computation

progress bar

7) confirm & ack A

Quota: 2 Quota: 1 Quota: 1

Overlapping computation

with ordering enables low

end-to-end latencyDeliver as soon as

record is durable by

speculating order

23

Outline

• Introduction

• Motivation

• SpecLog Abstraction and Interface

• Belfast Design and Implementation

• Evaluation

24

Implementing the SpecLog Abstraction

Fix-ante ordering and SpecLog provide a general framework for speculation

25

Implementing the SpecLog Abstraction

Fix-ante ordering and SpecLog provide a general framework for speculation

Belfast is an implementation, solves practical challenges

25

Implementing the SpecLog Abstraction

Fix-ante ordering and SpecLog provide a general framework for speculation

Belfast is an implementation, solves practical challenges

• Right-sizing quotas – rate-based quotas

25

Implementing the SpecLog Abstraction

Fix-ante ordering and SpecLog provide a general framework for speculation

Belfast is an implementation, solves practical challenges

• Right-sizing quotas – rate-based quotas

• Quickly absorbing bursts – lag-fix mechanism

25

Implementing the SpecLog Abstraction

Fix-ante ordering and SpecLog provide a general framework for speculation

Belfast is an implementation, solves practical challenges

• Right-sizing quotas – rate-based quotas

• Quickly absorbing bursts – lag-fix mechanism

• Dealing with long-term rate changes at shards

25

Implementing the SpecLog Abstraction

Fix-ante ordering and SpecLog provide a general framework for speculation

Belfast is an implementation, solves practical challenges

• Right-sizing quotas – rate-based quotas

• Quickly absorbing bursts – lag-fix mechanism

• Dealing with long-term rate changes at shards

• Retaining seamless reconfigurability
speculation lease window

25

Implementing the SpecLog Abstraction

Fix-ante ordering and SpecLog provide a general framework for speculation

Belfast is an implementation, solves practical challenges

• Right-sizing quotas – rate-based quotas

• Quickly absorbing bursts – lag-fix mechanism

• Dealing with long-term rate changes at shards

• Retaining seamless reconfigurability

• Mis-speculations and failure handling – view-change protocol

speculation lease window

25

Evaluation

• What are the end-to-end latency benefits of Belfast?

• Does Belfast benefit end applications?

26

End-to-End Latency Benefits

Workload: 4KB records, downstream computation of 1.5ms per batch of
consumed records

27

End-to-End Latency Benefits

Workload: 4KB records, downstream computation of 1.5ms per batch of
consumed records

Delivers records 3.5x

earlier
Enables 1.6x lower end-

to-end latencies

0

1

2

3

4

5

4-shards@40K

Delivery

Latency
(ms)

Scalog Belfast

0

2

4

6

8

4-shards@40K

E2E

Latency
(ms)

Scalog Belfast

3.5x 1.63x

27

Benefits in Applications

Build 3 applications – intrusion detection, fraud monitoring and high-frequency
trading

Benefits in e2e latency for real-

world applications

0

2

4

6

8

Intrusion

Detection

Fraud

Monitoring

High

Frequency

Trading

E2E

Latency
(ms)

Scalog Belfast

1.60x 1.40x
1.42x

28

More details and experiments in the paper

Many more experiments in the paper

• App evaluation under failure scenarios and mis-speculations

• Evaluation under bursts, rate changes

• End-to-end latency at scale

The paper covers many more discussions about Belfast

29

Summary

• Today’s shared logs suffer high delivery latencies due to expensive ordering

• SpecLog, a new abstraction, allows speculative delivery by predicting global order

• SpecLog uses Fix-Ante ordering, enables high speculation success

• Belfast, an implementation of SpecLog, enables low e2e latencies for end
applications

Available on GitHub:

https://github.com/dassl-uiuc/speclog-artifact

30

https://github.com/dassl-uiuc/speclog-artifact
https://github.com/dassl-uiuc/speclog-artifact
https://github.com/dassl-uiuc/speclog-artifact
https://github.com/dassl-uiuc/speclog-artifact
https://github.com/dassl-uiuc/speclog-artifact

	Slide 1: Low End-to-End Latency atop a Speculative Shared Log with Fix-Ante Ordering
	Slide 2: Current Shared Logs  High App End-to-End Latency
	Slide 3: Current Shared Logs  High App End-to-End Latency
	Slide 4: Current Shared Logs  High App End-to-End Latency
	Slide 5: Current Shared Logs  High App End-to-End Latency
	Slide 6: Current Shared Logs  High App End-to-End Latency
	Slide 7: Current Shared Logs  High App End-to-End Latency
	Slide 8: The SpecLog Abstraction and Fix-Ante Ordering
	Slide 9: The SpecLog Abstraction and Fix-Ante Ordering
	Slide 10: The SpecLog Abstraction and Fix-Ante Ordering
	Slide 11: The SpecLog Abstraction and Fix-Ante Ordering
	Slide 12: Contributions
	Slide 13: Outline
	Slide 14: Shared Logs
	Slide 15: Shared Logs
	Slide 16: Shared Logs
	Slide 17: Shared Logs
	Slide 18: Shared Logs
	Slide 19: Shared Logs
	Slide 20: Shared Logs
	Slide 21: Shared Logs
	Slide 22: State-of-the-art – Durability-First Shared Logs (Scalog)
	Slide 23: State-of-the-art – Durability-First Shared Logs (Scalog)
	Slide 24: State-of-the-art – Durability-First Shared Logs (Scalog)
	Slide 25: State-of-the-art – Durability-First Shared Logs (Scalog)
	Slide 26: State-of-the-art – Durability-First Shared Logs (Scalog)
	Slide 27: State-of-the-art – Durability-First Shared Logs (Scalog)
	Slide 28: State-of-the-art – Durability-First Shared Logs (Scalog)
	Slide 29: State-of-the-art – Durability-First Shared Logs (Scalog)
	Slide 30: Problem: High Delivery Latency
	Slide 31: Problem: High Delivery Latency
	Slide 32: Problem: High Delivery Latency
	Slide 33: Problem: High Delivery Latency
	Slide 34: Problem: High Delivery Latency
	Slide 35: Problem: High Delivery Latency
	Slide 36: Problem: High Delivery Latency
	Slide 37: Problem: High Delivery Latency
	Slide 38: Problem: High Delivery Latency
	Slide 39: Problem: High Delivery Latency
	Slide 40: Problem: High Delivery Latency
	Slide 41: High Delivery Latency  High App E2E Latency
	Slide 42: High Delivery Latency  High App E2E Latency
	Slide 43: High Delivery Latency  High App E2E Latency
	Slide 44: High Delivery Latency  High App E2E Latency
	Slide 45: High Delivery Latency  High App E2E Latency
	Slide 46: Latency Demands of Real-Time Applications
	Slide 47: Latency Demands of Real-Time Applications
	Slide 48: Latency Demands of Real-Time Applications
	Slide 49: Outline
	Slide 50: An Opportunity for Speculation in Shared Logs
	Slide 51: An Opportunity for Speculation in Shared Logs
	Slide 52: An Opportunity for Speculation in Shared Logs
	Slide 53: An Opportunity for Speculation in Shared Logs
	Slide 54: An Opportunity for Speculation in Shared Logs
	Slide 55: An Opportunity for Speculation in Shared Logs
	Slide 56: An Opportunity for Speculation in Shared Logs
	Slide 57: SpecLog – Abstraction and Interface
	Slide 58: SpecLog – Abstraction and Interface
	Slide 59: SpecLog – Abstraction and Interface
	Slide 60: SpecLog – Abstraction and Interface
	Slide 61: SpecLog – Abstraction and Interface
	Slide 62: SpecLog – Abstraction and Interface
	Slide 63: SpecLog – Abstraction and Interface
	Slide 64: SpecLog – Abstraction and Interface
	Slide 65: Challenge – Prediction is Hard
	Slide 66: Challenge – Prediction is Hard
	Slide 67: Challenge – Prediction is Hard
	Slide 68: Challenge – Prediction is Hard
	Slide 69: Challenge – Prediction is Hard
	Slide 70: Challenge – Prediction is Hard
	Slide 71: Challenge – Prediction is Hard
	Slide 72: Challenge – Prediction is Hard
	Slide 73: Challenge – Prediction is Hard
	Slide 74: Idea – Fix-Ante Ordering
	Slide 75: Idea – Fix-Ante Ordering
	Slide 76: Idea – Fix-Ante Ordering
	Slide 77: Idea – Fix-Ante Ordering
	Slide 78: Idea – Fix-Ante Ordering
	Slide 79: Idea – Fix-Ante Ordering
	Slide 80: Idea – Fix-Ante Ordering
	Slide 81: Idea – Fix-Ante Ordering
	Slide 82: Idea – Fix-Ante Ordering
	Slide 83: Idea – Fix-Ante Ordering
	Slide 84: Idea – Fix-Ante Ordering
	Slide 85: Idea – Fix-Ante Ordering
	Slide 86: Idea – Fix-Ante Ordering
	Slide 87: If Predetermined, Why Speculate!?
	Slide 88: If Predetermined, Why Speculate!?
	Slide 89: If Predetermined, Why Speculate!?
	Slide 90: If Predetermined, Why Speculate!?
	Slide 91: If Predetermined, Why Speculate!?
	Slide 92: If Predetermined, Why Speculate!?
	Slide 93: If Predetermined, Why Speculate!?
	Slide 94: If Predetermined, Why Speculate!?
	Slide 95: If Predetermined, Why Speculate!?
	Slide 96: If Predetermined, Why Speculate!?
	Slide 97: If Predetermined, Why Speculate!?
	Slide 98: If Predetermined, Why Speculate!?
	Slide 99: If Predetermined, Why Speculate!?
	Slide 100: If Predetermined, Why Speculate!?
	Slide 101: If Predetermined, Why Speculate!?
	Slide 102: Real-Time App atop SpecLog
	Slide 103: Real-Time App atop SpecLog
	Slide 104: Real-Time App atop SpecLog
	Slide 105: Real-Time App atop SpecLog
	Slide 106: Real-Time App atop SpecLog
	Slide 107: Real-Time App atop SpecLog
	Slide 108: Real-Time App atop SpecLog
	Slide 109: Real-Time App atop SpecLog
	Slide 110: Real-Time App atop SpecLog
	Slide 111: Real-Time App atop SpecLog
	Slide 112: Real-Time App atop SpecLog
	Slide 113: Real-Time App atop SpecLog
	Slide 114: Real-Time App atop SpecLog
	Slide 115: Outline
	Slide 116: Implementing the SpecLog Abstraction
	Slide 117: Implementing the SpecLog Abstraction
	Slide 118: Implementing the SpecLog Abstraction
	Slide 119: Implementing the SpecLog Abstraction
	Slide 120: Implementing the SpecLog Abstraction
	Slide 121: Implementing the SpecLog Abstraction
	Slide 122: Implementing the SpecLog Abstraction
	Slide 123: Evaluation
	Slide 124: End-to-End Latency Benefits
	Slide 125: End-to-End Latency Benefits
	Slide 126: Benefits in Applications
	Slide 127: More details and experiments in the paper
	Slide 128: Summary

