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Overlap ordering and application compute
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The SpecLog Abstraction and Fix-Ante Ordering

We note an opportunity for speculative execution 

Fix-Ante Ordering

Predetermine the global order for easy prediction

Make system adhere to that order

High 
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success!
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Contributions

• SpecLog – A new speculative shared log abstraction, uses fix-ante ordering to 
enable near perfect speculation

• Belfast – Implementation of SpecLog abstraction and fix-ante ordering

• Addresses practical challenges that arise in implementing fix-ante ordering

• Enables low e2e latency while retaining benefits and guarantees of today’s shared logs

• E2E latency benefits in end applications like fraud detection, intrusion detection 
and high-frequency trading
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Outline

• Introduction

• Motivation

• SpecLog Abstraction and Interface

• Belfast – An Implementation of SpecLog

• Evaluation
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Durability first – appended records first made durable

Batched ordering – amortize cost of ordering through batching

Shard 1

Shard 2

Sequencer

Global Order
client

Paxos/Raft for FT

Flexible Data Placement Seamlessly Reconfigurable Scalablity

Similar designs adopted by Boki [SOSP’21], FlexLog [HPDC’23]
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Latency Demands of Real-Time Applications

Many applications care about e2e latency

• Real-time analytics, high-frequency trading, fraud and intrusion detection systems 

These apps demand a low delivery latency from the shared log

2023 streaming report by RedPanda 

 ~35% practitioners primarily care about delivery latency of 

their streaming system
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primary backup

A A

Shard 2

primary backup

Shard 3

primary backup

C C D D

Shard 2 can easily predict C’s position to be 2

Quota: 2 Quota: 1 Quota: 1

? ? C ?

no-ops to fill remaining quota

0 1 2 3

What if a shard has more 

records to report? 

Solution: 

Delay to subsequent reports

What if a shard does not 

have enough records?

Solution: 

Pad quota with no-ops
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If shards meet quota, predetermined order same as actual global order 

In this case → speculation succeeds

If not → speculation fails

Cases: 

primary backup

shard internal failure 

No mis-speculation

Shard can internally mask failures!

shard reports

primary backup

whole shard failure

Mis-speculations occur

Shard cannot meet quota

Rare!
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Real-Time App atop SpecLog
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Outline

• Introduction

• Motivation

• SpecLog Abstraction and Interface

• Belfast Design and Implementation

• Evaluation
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Fix-ante ordering and SpecLog provide a general framework for speculation
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Implementing the SpecLog Abstraction

Fix-ante ordering and SpecLog provide a general framework for speculation

Belfast is an implementation, solves practical challenges

• Right-sizing quotas – rate-based quotas

• Quickly absorbing bursts – lag-fix mechanism

• Dealing with long-term rate changes at shards

• Retaining seamless reconfigurability 

• Mis-speculations and failure handling – view-change protocol

speculation lease window
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Evaluation

• What are the end-to-end latency benefits of Belfast? 

• Does Belfast benefit end applications?
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End-to-End Latency Benefits

Workload: 4KB records, downstream computation of 1.5ms per batch of 
consumed records
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End-to-End Latency Benefits

Workload: 4KB records, downstream computation of 1.5ms per batch of 
consumed records

Delivers records 3.5x 

earlier
Enables 1.6x lower end-

to-end latencies
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Benefits in Applications

Build 3 applications – intrusion detection, fraud monitoring and high-frequency 
trading

Benefits in e2e latency for real-

world applications
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4

6
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Intrusion

Detection

Fraud

Monitoring

High

Frequency

Trading

E2E

Latency 
(ms)

Scalog Belfast

1.60x 1.40x
1.42x
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More details and experiments in the paper

Many more experiments in the paper

• App evaluation under failure scenarios and mis-speculations

• Evaluation under bursts, rate changes

• End-to-end latency at scale

The paper covers many more discussions about Belfast
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Summary

• Today’s shared logs suffer high delivery latencies due to expensive ordering

• SpecLog, a new abstraction, allows speculative delivery by predicting global order

• SpecLog uses Fix-Ante ordering, enables high speculation success

• Belfast, an implementation of SpecLog, enables low e2e latencies for end 
applications

Available on GitHub:

https://github.com/dassl-uiuc/speclog-artifact
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