
LazyLog: A New Shared Log Abstraction
for Low-Latency Applications

Xuhao Luo, Shreesha G. Bhat*, Jiyu Hu*,

Ram Alagappan, Aishwarya Ganesan

University of Illinois Urbana-Champaign

1*equal contribution

Shared Log: Abstraction and Interface

2

Shared Log: Abstraction and Interface

Shared Log is pervasive and used by many applications…

2

Shared Log: Abstraction and Interface

Shared Log is pervasive and used by many applications…

2

Client1Client2Client3

Shared Log: Abstraction and Interface

Shared Log is pervasive and used by many applications…

2

// append to log; return log position

uint64_t append(record r);

Client1Client2Client3

appendappend

Shared Log: Abstraction and Interface

Shared Log is pervasive and used by many applications…

2

// append to log; return log position

uint64_t append(record r);

// read ‘len’ records starting at ‘from’

list read(logpos_t from, uint64_t len);

Client1Client2Client3

appendappendread

Shared Log: Abstraction and Interface

Shared Log is pervasive and used by many applications…

2

// append to log; return log position

uint64_t append(record r);

// read ‘len’ records starting at ‘from’

list read(logpos_t from, uint64_t len);

Client1Client2Client3

appendappendread

Fault-tolerant, linearizably ordered sequence of records

Shared Log: Abstraction and Interface

Shared Log is pervasive and used by many applications…

2

// append to log; return log position

uint64_t append(record r);

// read ‘len’ records starting at ‘from’

list read(logpos_t from, uint64_t len);

Client1Client2Client3

appendappendread

Implementations:

Fault-tolerant, linearizably ordered sequence of records

Shared Log: Abstraction and Interface

Shared Log is pervasive and used by many applications…

2

// append to log; return log position

uint64_t append(record r);

// read ‘len’ records starting at ‘from’

list read(logpos_t from, uint64_t len);

Client1Client2Client3

appendappendread

Implementations:

Fault-tolerant, linearizably ordered sequence of records

Corfu [NSDI 12]

Scalog [NSDI 20]

Boki [SOSP 21]

FlexLog [HPDC 23]

Shared Log: Abstraction and Interface

Shared Log is pervasive and used by many applications…

2

// append to log; return log position

uint64_t append(record r);

// read ‘len’ records starting at ‘from’

list read(logpos_t from, uint64_t len);

Client1Client2Client3

appendappendread

Implementations:

Fault-tolerant, linearizably ordered sequence of records

Corfu [NSDI 12]

Scalog [NSDI 20]

Boki [SOSP 21]

FlexLog [HPDC 23]

The Problem with Current Shared Logs

3

The Problem with Current Shared Logs

3

• State-of-the-art implementations suffer from high ingestion latencies
• Append takes multiple RTTs in Scalog, Corfu, etc.

The Problem with Current Shared Logs

3

• State-of-the-art implementations suffer from high ingestion latencies
• Append takes multiple RTTs in Scalog, Corfu, etc.

• Low ingestion latency is critical to applications

The Problem with Current Shared Logs

3

• State-of-the-art implementations suffer from high ingestion latencies
• Append takes multiple RTTs in Scalog, Corfu, etc.

• Low ingestion latency is critical to applications

• Rooted in eager ordering nature of shared logs:

The Problem with Current Shared Logs

3

• State-of-the-art implementations suffer from high ingestion latencies
• Append takes multiple RTTs in Scalog, Corfu, etc.

• Low ingestion latency is critical to applications

• Rooted in eager ordering nature of shared logs:
• Order is established eagerly upon appends

The Problem with Current Shared Logs

3

• State-of-the-art implementations suffer from high ingestion latencies
• Append takes multiple RTTs in Scalog, Corfu, etc.

• Low ingestion latency is critical to applications

• Rooted in eager ordering nature of shared logs:
• Order is established eagerly upon appends

• Position of record is decided by the time append completes

Can a shared log avoid eager ordering, yet also
preserve the ordering guarantees of conventional shared logs?

4

LazyLog: Idea and Abstraction

Insight Idea

5

LazyLog: Idea and Abstraction

Insight

① In many applications, linearizable
ordering is not required right away
upon ingestion.

Idea

5

LazyLog: Idea and Abstraction

Insight

① In many applications, linearizable
ordering is not required right away
upon ingestion.

Idea

o Shared log need not eagerly bind a
record to a position upon an append
o But only make it durable

5

LazyLog: Idea and Abstraction

Insight

① In many applications, linearizable
ordering is not required right away
upon ingestion.

② Linearizable order is needed when
records are consumed

Idea

o Shared log need not eagerly bind a
record to a position upon an append
o But only make it durable

5

LazyLog: Idea and Abstraction

Insight

① In many applications, linearizable
ordering is not required right away
upon ingestion.

② Linearizable order is needed when
records are consumed

Idea

o Shared log need not eagerly bind a
record to a position upon an append
o But only make it durable

o Although shared log can bind records
to positions lazily, it must enforce
ordering before positions can be read

5

LazyLog: Idea and Abstraction

Insight

① In many applications, linearizable
ordering is not required right away
upon ingestion.

② Linearizable order is needed when
records are consumed

③ In many apps, readers are naturally
decoupled temporally from writers

Idea

o Shared log need not eagerly bind a
record to a position upon an append
o But only make it durable

o Although shared log can bind records
to positions lazily, it must enforce
ordering before positions can be read

5

LazyLog: Idea and Abstraction

Insight

① In many applications, linearizable
ordering is not required right away
upon ingestion.

② Linearizable order is needed when
records are consumed

③ In many apps, readers are naturally
decoupled temporally from writers

Idea

o Shared log need not eagerly bind a
record to a position upon an append
o But only make it durable

o Although shared log can bind records
to positions lazily, it must enforce
ordering before positions can be read

o Shared log can do the ordering
comfortably in the background

5

LazyLog: Idea and Abstraction

Insight

① In many applications, linearizable
ordering is not required right away
upon ingestion.

② Linearizable order is needed when
records are consumed

③ In many apps, readers are naturally
decoupled temporally from writers

Idea

o Shared log need not eagerly bind a
record to a position upon an append
o But only make it durable

o Although shared log can bind records
to positions lazily, it must enforce
ordering before positions can be read

o Shared log can do the ordering
comfortably in the background

5

LazyLog: A new shared log abstraction built upon these ideas

Results Overview

6

Results Overview

• Implemented LazyLog abstraction

6

Results Overview

• Implemented LazyLog abstraction

• Offers 1-RTT appends, greatly reduce ingestion latency while providing
linearizability

• As opposed to multiple RTTs in Scalog and Corfu

6

Results Overview

• Implemented LazyLog abstraction

• Offers 1-RTT appends, greatly reduce ingestion latency while providing
linearizability

• As opposed to multiple RTTs in Scalog and Corfu

• Nearly no overhead on reads

6

Results Overview

• Implemented LazyLog abstraction

• Offers 1-RTT appends, greatly reduce ingestion latency while providing
linearizability

• As opposed to multiple RTTs in Scalog and Corfu

• Nearly no overhead on reads

• Benefits end apps like KV store, audit-logging, checkpointing with LazyLog’s
low latency

6

Outline

Introduction

Motivation

LazyLog Insight and Interface

LazyLog System Design

Performance Evaluation

7

Total Ordering in Shared Logs

8

Total Ordering in Shared Logs

8

• Linearizable ordering: if append(B) starts
after append(A) completes, then B appears
after A in the shared log

Total Ordering in Shared Logs

8

• Linearizable ordering: if append(B) starts
after append(A) completes, then B appears
after A in the shared log

• Shards

Shard-1

primary backup primary backup

Shard-2

Shard-3

primary backup primary backup

Shard-4

Total Ordering in Shared Logs

8

• Linearizable ordering: if append(B) starts
after append(A) completes, then B appears
after A in the shared log

• Shards

• Ordering Layer

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Shard-3

primary backup primary backup

Shard-4

Total Ordering in Shared Logs

8

• Linearizable ordering: if append(B) starts
after append(A) completes, then B appears
after A in the shared log

• Shards

• Ordering Layer

Shared log provides total order across shards

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Shard-3

primary backup primary backup

Shard-4

1 1 2 2

3 3 4 4

Eager Ordering → High Latency

9

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

• Scalog

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

• Scalog
• durability first

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

• Scalog
• durability first
• then global ordering

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

• Scalog
• durability first
• then global ordering

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

• Scalog
• durability first
• then global ordering
• 3.5RTT + batch interval

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

• Scalog
• durability first
• then global ordering
• 3.5RTT + batch interval

• Corfu

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

• Scalog
• durability first
• then global ordering
• 3.5RTT + batch interval

• Corfu
• global ordering first

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

• Scalog
• durability first
• then global ordering
• 3.5RTT + batch interval

• Corfu
• global ordering first
• then durability

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

• Scalog
• durability first
• then global ordering
• 3.5RTT + batch interval

• Corfu
• global ordering first
• then durability

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

• Scalog
• durability first
• then global ordering
• 3.5RTT + batch interval

• Corfu
• global ordering first
• then durability

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

• Scalog
• durability first
• then global ordering
• 3.5RTT + batch interval

• Corfu
• global ordering first
• then durability
• 3RTT

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Eager Ordering → High Latency

9

Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are
completed before getting back to clients

• Scalog
• durability first
• then global ordering
• 3.5RTT + batch interval

• Corfu
• global ordering first
• then durability
• 3RTT

Results in high ingestion latency for applications

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Low-Latency Ingestion is Critical for Apps

10

Low-Latency Ingestion is Critical for Apps

10

Distributed databases

e.g., FireScroll built atop RedPanda requires quick durability

Low-Latency Ingestion is Critical for Apps

10

Distributed databases

e.g., FireScroll built atop RedPanda requires quick durability

Similarly, event sourcing, journaling for FT, and log aggregation require low-latency
logging

Low-Latency Ingestion is Critical for Apps

10

Distributed databases

e.g., FireScroll built atop RedPanda requires quick durability

Similarly, event sourcing, journaling for FT, and log aggregation require low-latency
logging

A 2023 survey by RedPanda:

1/3 of 300 practitioners rated

ingestion latency as the primary

latency metric they care about

Outline

Introduction

Motivation

LazyLog Insight and Interface

LazyLog System Design

Performance Evaluation

11

12

Insight

12

Insight

Although linearizable order is necessary, in many applications,

it is not needed eagerly upon ingestion

But only later upon reads

12

Insight

Although linearizable order is necessary, in many applications,

it is not needed eagerly upon ingestion

But only later upon reads

And readers are naturally decoupled temporally from writers

12

Insight

Although linearizable order is necessary, in many applications,

it is not needed eagerly upon ingestion

But only later upon reads

And readers are naturally decoupled temporally from writers

A shared log can thus defer ordering upon appends
But establish it before reads arrive

Holds for Many Apps

13

Holds for Many Apps

Example: reader-writer decoupled databases like FireScroll

13

Holds for Many Apps

Example: reader-writer decoupled databases like FireScroll

① Writers do not require or use the appended index immediately

13

writers

Holds for Many Apps

Example: reader-writer decoupled databases like FireScroll

① Writers do not require or use the appended index immediately

② Readers must apply updates in linearizable order to construct the correct state

13

writers
readers

Holds for Many Apps

Example: reader-writer decoupled databases like FireScroll

① Writers do not require or use the appended index immediately

② Readers must apply updates in linearizable order to construct the correct state

③ Readers and writers are time-decoupled: readers typically lag behind writers

13

writers
readers Time lag

Application Study

14

Application Study

14

oEvent Sourcing oReaders lag behind writers to
avoid interference

Application Study

14

oEvent Sourcing oReaders lag behind writers to
avoid interference

oActivity logging oAnalytic jobs lag behind writers

Application Study

14

oEvent Sourcing oReaders lag behind writers to
avoid interference

oActivity logging oAnalytic jobs lag behind writers

o Log aggregation o Logs are only read much later
during debugging

Application Study

14

oEvent Sourcing oReaders lag behind writers to
avoid interference

oActivity logging oAnalytic jobs lag behind writers

o Log aggregation o Logs are only read much later
during debugging

oHigh-availability journaling o Journal is accessed only upon
failures

Application Study

14

LazyLog’s insights also hold for them

oEvent Sourcing oReaders lag behind writers to
avoid interference

oActivity logging oAnalytic jobs lag behind writers

o Log aggregation o Logs are only read much later
during debugging

oHigh-availability journaling o Journal is accessed only upon
failures

LazyLog: Abstraction and Interface

Abstraction Interface

15

LazyLog: Abstraction and Interface

Abstraction

o LazyLog doesn’t bind a record to a
position upon append

Interface

15

LazyLog: Abstraction and Interface

Abstraction

o LazyLog doesn’t bind a record to a
position upon append
o Only makes the record durable

Interface

15

LazyLog: Abstraction and Interface

Abstraction

o LazyLog doesn’t bind a record to a
position upon append
o Only makes the record durable
o Guarantee the record will be

eventually bound to correct position

Interface

15

LazyLog: Abstraction and Interface

Abstraction

o LazyLog doesn’t bind a record to a
position upon append
o Only makes the record durable
o Guarantee the record will be

eventually bound to correct position

o LazyLog lazily binds records to
positions and enforces ordering
before the positions can be read

Interface

15

LazyLog: Abstraction and Interface

Abstraction

o LazyLog doesn’t bind a record to a
position upon append
o Only makes the record durable
o Guarantee the record will be

eventually bound to correct position

o LazyLog lazily binds records to
positions and enforces ordering
before the positions can be read

Interface

// append to log; return true if record
is durable

bool append(record r);

15

LazyLog: Abstraction and Interface

Abstraction

o LazyLog doesn’t bind a record to a
position upon append
o Only makes the record durable
o Guarantee the record will be

eventually bound to correct position

o LazyLog lazily binds records to
positions and enforces ordering
before the positions can be read

Interface

// append to log; return true if record
is durable

bool append(record r);

15

Index is not returned!

LazyLog: Abstraction and Interface

Abstraction

o LazyLog doesn’t bind a record to a
position upon append
o Only makes the record durable
o Guarantee the record will be

eventually bound to correct position

o LazyLog lazily binds records to
positions and enforces ordering
before the positions can be read

Interface

// append to log; return true if record
is durable

bool append(record r);

// read ‘len’ records starting at ‘from’

list read(logpos_t from, uint64_t len);

15

Index is not returned!

Performance Property

16

• Cannot be too lazy – keep ordering in the background

Performance Property

16

• Cannot be too lazy – keep ordering in the background

Performance Property

16

…

• Cannot be too lazy – keep ordering in the background

Performance Property

16

durable but yet-to-be ordereddurable & ordered

…

• Cannot be too lazy – keep ordering in the background

Performance Property

16

Append (always fast)

durable but yet-to-be ordereddurable & ordered

…

• Cannot be too lazy – keep ordering in the background

Performance Property

16

Append (always fast)

durable but yet-to-be ordereddurable & ordered

Bg ordering

…

• Cannot be too lazy – keep ordering in the background

Performance Property

16

Append (always fast)

durable but yet-to-be ordereddurable & ordered

Bg ordering

Read (fast)

…

• Cannot be too lazy – keep ordering in the background

Performance Property

16

Append (always fast)

durable but yet-to-be ordereddurable & ordered

Bg ordering

Read (fast) Read (slow)

…

• Cannot be too lazy – keep ordering in the background

• For many apps – reads are always fast

Performance Property

16

Append (always fast)

durable but yet-to-be ordereddurable & ordered

Bg ordering

Read (fast) Read (slow)

…

• Cannot be too lazy – keep ordering in the background

• For many apps – reads are always fast

• Even if immediately read, LazyLog preserves the performance of eager shared logs
• never worse than an eager-ordering shared log!

Performance Property

16

Append (always fast)

durable but yet-to-be ordereddurable & ordered

Bg ordering

Read (fast) Read (slow)

…

Related Work

17

Related Work

LazyLog is inspired by the general idea of deferring work until needed

17

Related Work

LazyLog is inspired by the general idea of deferring work until needed

Exploited in other contexts like filesystems (Speculator[SOSP’05]) and databases (Lazy
Eval Txn[SIGMOD’14])

17

Related Work

LazyLog is inspired by the general idea of deferring work until needed

Exploited in other contexts like filesystems (Speculator[SOSP’05]) and databases (Lazy
Eval Txn[SIGMOD’14])

Also in distributed systems

17

Related Work

LazyLog is inspired by the general idea of deferring work until needed

Exploited in other contexts like filesystems (Speculator[SOSP’05]) and databases (Lazy
Eval Txn[SIGMOD’14])

Also in distributed systems

• Skyros[SOSP’21]: defer ordering within a single shard

17

Related Work

LazyLog is inspired by the general idea of deferring work until needed

Exploited in other contexts like filesystems (Speculator[SOSP’05]) and databases (Lazy
Eval Txn[SIGMOD’14])

Also in distributed systems

• Skyros[SOSP’21]: defer ordering within a single shard

• Occult[NSDI’17]: defer ordering across shards, but only provides causal ordering

17

Related Work

LazyLog is inspired by the general idea of deferring work until needed

Exploited in other contexts like filesystems (Speculator[SOSP’05]) and databases (Lazy
Eval Txn[SIGMOD’14])

Also in distributed systems

• Skyros[SOSP’21]: defer ordering within a single shard

• Occult[NSDI’17]: defer ordering across shards, but only provides causal ordering

• LazyLog: First shared log to offer linearizable ordering across shards with low
latency by deferring ordering

17

Related Work

LazyLog is inspired by the general idea of deferring work until needed

Exploited in other contexts like filesystems (Speculator[SOSP’05]) and databases (Lazy
Eval Txn[SIGMOD’14])

Also in distributed systems

• Skyros[SOSP’21]: defer ordering within a single shard

• Occult[NSDI’17]: defer ordering across shards, but only provides causal ordering

• LazyLog: First shared log to offer linearizable ordering across shards with low
latency by deferring ordering

• Enabled by our new observations about modern shared-log applications

17

Outline

Introduction

Motivation

LazyLog Insight and Interface

LazyLog System Design

Performance Evaluation

18

System Design

19

System Design

19

Designed an implementation of the LazyLog interface: Erwin

System Design

19

Designed an implementation of the LazyLog interface: Erwin

Offers linearizable ordering across shards with 1-RTT appends

System Design

19

Designed an implementation of the LazyLog interface: Erwin

Offers linearizable ordering across shards with 1-RTT appends

Offers about a million 4KB appends/sec on our testbed

Erwin’s Goal: 1-RTT Append

20

Clients

shard1 shard2 shard3

Sequencing layer

↑ GOAL

Erwin’s Goal: 1-RTT Append

20

Clients

shard1 shard2 shard3

Y Z
X A

Sequencing layer

Y Z

Data

X
A

↑ GOAL

Erwin’s Goal: 1-RTT Append

20

Clients

shard1 shard2 shard3

Y Z
X A

Sequencing layer

Y Z

Data

X
A

Problem:
Require coordination within
a shard

↑ GOAL

Erwin’s Goal: 1-RTT Append

20

Clients

shard1 shard2 shard3

Y Z
X A

Sequencing layer

Y Z

Data

X
A

Problem:
Require coordination within
a shard

↑ GOAL

Erwin’s Goal: 1-RTT Append

20

Clients

shard1 shard2 shard3

Y Z
X A

A X

Sequencing layer

Y

Y

Z

Z

Data

Y Z

X
A

X
A

Solution:
Send record to all replicas in the
shard

Problem:
Require coordination within
a shard

↑ GOAL

Erwin’s Goal: 1-RTT Append

20

Clients

shard1 shard2 shard3

Y Z
X A

A X

Sequencing layer

Y

Y

Z

Z

Data

Y Z

X
A

X
A

Solution:
Send record to all replicas in the
shard

Problem:
No order across and within
shards

Problem:
Require coordination within
a shard

↑ GOAL

!

Erwin’s Goal: 1-RTT Append

20

Clients

shard1 shard2 shard3

Y Z
X A

A X

Sequencing layer

A YZX

Y

Y

Z

Z

Data

Metadata

Y Z

X
A

X
A

Solution:
Send record to all replicas in the
shard

Solution:
Sequence the metadata in the
same RTT

Problem:
No order across and within
shards

Problem:
Require coordination within
a shard

↑ GOAL

!

Erwin’s Goal: 1-RTT Append

20

Clients

shard1 shard2 shard3

Y Z
X A

A X

Sequencing layer

A YZX

Y

Y

Z

Z

Data

Metadata

provide ordering info to shards
in the background

1
2 X
3 Z
4 Y

A

Shards use this to know the order and serve reads

Y Z

X
A

X
A

Solution:
Send record to all replicas in the
shard

Solution:
Sequence the metadata in the
same RTT

Problem:
No order across and within
shards

Problem:
Require coordination within
a shard

↑ GOAL

!

Erwin: 1-RTT Append

21

Clients

Sequencing layer

A YZX

Metadata

Erwin: 1-RTT Append

21

Clients

Sequencing layer

A YZX

A YZX

A YZX

Metadata

Problem:
Sequencing layer must run
consensus to make ordering
fault-tolerant → Incurs
coordination within replicas

Erwin: 1-RTT Append

21

Clients
Solution:
Coordination-free sequencing

Sequencing layer

A YZX

A YZX

A YZX

Metadata

Problem:
Sequencing layer must run
consensus to make ordering
fault-tolerant → Incurs
coordination within replicas

Erwin: 1-RTT Append

• Clients write to shard replicas in 1RTT; in same RTT, write metadata to all seq
replicas

21

Clients
Solution:
Coordination-free sequencing

Sequencing layer

A YZX

A YZX

A YZX

Metadata

Problem:
Sequencing layer must run
consensus to make ordering
fault-tolerant → Incurs
coordination within replicas

Erwin: 1-RTT Append

• Clients write to shard replicas in 1RTT; in same RTT, write metadata to all seq
replicas

• Appends complete in 1 RTT

21

Clients
Solution:
Coordination-free sequencing

Sequencing layer

A YZX

A YZX

A YZX

Metadata

Problem:
Sequencing layer must run
consensus to make ordering
fault-tolerant → Incurs
coordination within replicas

Erwin: 1-RTT Append

• Clients write to shard replicas in 1RTT; in same RTT, write metadata to all seq
replicas

• Appends complete in 1 RTT

21

Clients
Solution:
Coordination-free sequencing

Sequencing layer

A YZX

A Y ZX

A Y ZX

Metadata

Problem:
Sequencing layer must run
consensus to make ordering
fault-tolerant → Incurs
coordination within replicas

Erwin: 1-RTT Append

• Clients write to shard replicas in 1RTT; in same RTT, write metadata to all seq
replicas

• Appends complete in 1 RTT

• Erwin allows different orders across sequencing replicas

• but without violating the linearizability

21

Clients
Solution:
Coordination-free sequencing

Sequencing layer

A YZX

A Y ZX

A Y ZX

Metadata

Problem:
Sequencing layer must run
consensus to make ordering
fault-tolerant → Incurs
coordination within replicas

Correct Lazy Sequencing

22

Correct Lazy Sequencing

• Intuition: If append(B) follows append(A) in real-time, all logs will capture that dependency

22

Correct Lazy Sequencing

• Intuition: If append(B) follows append(A) in real-time, all logs will capture that dependency

• Example: actual ordering is (A|||X) → (Z|||Y): Captured by all replicas

22

Correct Lazy Sequencing

• Intuition: If append(B) follows append(A) in real-time, all logs will capture that dependency

• Example: actual ordering is (A|||X) → (Z|||Y): Captured by all replicas

22

A X

A X

AX

Correct Lazy Sequencing

• Intuition: If append(B) follows append(A) in real-time, all logs will capture that dependency

• Example: actual ordering is (A|||X) → (Z|||Y): Captured by all replicas

22

YZ

Y Z

YZ

A X

A X

AX

Correct Lazy Sequencing

• Intuition: If append(B) follows append(A) in real-time, all logs will capture that dependency

• Example: actual ordering is (A|||X) → (Z|||Y): Captured by all replicas

• Assign one sequencing replica as leader to decide the order

22

YZ

Y Z

YZ

A X

A X

AX

Leader

Follower

Follower

Correct Lazy Sequencing

• Intuition: If append(B) follows append(A) in real-time, all logs will capture that dependency

• Example: actual ordering is (A|||X) → (Z|||Y): Captured by all replicas

• Assign one sequencing replica as leader to decide the order

• Send leader’s order to shards

22

YZ

Y Z

YZ

A X

A X

AX

Leader

Follower

Follower

1
2 X
3 Z
4 Y

A

Handle Sequencing Leader Failure

Exposed order must be preserved upon failures!

23

A YZX

A Y ZX

A YZX

Leader

Follower

Follower

Handle Sequencing Leader Failure

Exposed order must be preserved upon failures!

23

A YZX

A Y ZX

A YZX

Leader

Follower

Follower

1
2 X
3 Z
4 Y

A • Shards have served
reads with this order

Handle Sequencing Leader Failure

Exposed order must be preserved upon failures!

23

A YZX

A Y ZX

A YZX

Leader

Follower

Follower

1
2 X
3 Z
4 Y

A • Shards have served
reads with this order

Handle Sequencing Leader Failure

Exposed order must be preserved upon failures!

23

A YZX

A Y ZX

A YZX

Leader

Follower

Follower

1
2 X
3 Z
4 Y

A • Shards have served
reads with this order

• Must preserve the

exposed order for
future reads

Handle Sequencing Leader Failure

Exposed order must be preserved upon failures!

Intuition:

• stable-gp invariant: records for pos before stable-gp are
stable and remain unchanged regardless of future failures

• Only positions up to stable-gp are exposed to readers

23

A YZX

A Y ZX

A YZX

Leader

Follower

Follower

1
2 X
3 Z
4 Y

A • Shards have served
reads with this order

• Must preserve the

exposed order for
future reads

stable
-gp

Handle Sequencing Leader Failure

Exposed order must be preserved upon failures!

Intuition:

• stable-gp invariant: records for pos before stable-gp are
stable and remain unchanged regardless of future failures

• Only positions up to stable-gp are exposed to readers

23

A YZX

A Y ZX

A YZX

Leader

Follower

Follower

1
2 X
3 Z
4 Y

A • Shards have served
reads with this order

• Must preserve the

exposed order for
future reads

stable
-gp

Handle Sequencing Leader Failure

Exposed order must be preserved upon failures!

Intuition:

• stable-gp invariant: records for pos before stable-gp are
stable and remain unchanged regardless of future failures

• Only positions up to stable-gp are exposed to readers

• Advance stable-gp only after

23

A YZX

A Y ZX

A YZX

Leader

Follower

Follower

1
2 X
3 Z
4 Y

A • Shards have served
reads with this order

• Must preserve the

exposed order for
future reads

stable
-gp

X A Y Z

shard1 shard2 shard3

Handle Sequencing Leader Failure

Exposed order must be preserved upon failures!

Intuition:

• stable-gp invariant: records for pos before stable-gp are
stable and remain unchanged regardless of future failures

• Only positions up to stable-gp are exposed to readers

• Advance stable-gp only after

• shards acknowledge order and

23

A YZX

A Y ZX

A YZX

Leader

Follower

Follower

1
2 X
3 Z
4 Y

A • Shards have served
reads with this order

• Must preserve the

exposed order for
future reads

stable
-gp

X A Y Z

shard1 shard2 shard3

2 1 4 3

Handle Sequencing Leader Failure

Exposed order must be preserved upon failures!

Intuition:

• stable-gp invariant: records for pos before stable-gp are
stable and remain unchanged regardless of future failures

• Only positions up to stable-gp are exposed to readers

• Advance stable-gp only after

• shards acknowledge order and
• entries on all sequencing replicas are

garbage-collected

23

A YZX

A Y ZX

A YZX

Leader

Follower

Follower

1
2 X
3 Z
4 Y

A • Shards have served
reads with this order

• Must preserve the

exposed order for
future reads

stable
-gp

X A Y Z

shard1 shard2 shard3

2 1 4 3

Garbage
Collected

Handle Sequencing Leader Failure

Exposed order must be preserved upon failures!

Intuition:

• stable-gp invariant: records for pos before stable-gp are
stable and remain unchanged regardless of future failures

• Only positions up to stable-gp are exposed to readers

• Advance stable-gp only after

• shards acknowledge order and
• entries on all sequencing replicas are

garbage-collected

23

A YZX

A Y ZX

A YZX

Leader

Follower

Follower

1
2 X
3 Z
4 Y

A • Shards have served
reads with this order

• Must preserve the

exposed order for
future reads

stable
-gp

X A Y Z

shard1 shard2 shard3

2 1 4 3

Garbage
Collected

Erwin: Read

24

A YZX Leader

stable

-gp

X A Y Z

shard1 shard2 shard3

2 1

Clients

GCed

2 4

Erwin: Read

• Reading ordered position (fast read): entry returned directly

24

A YZX Leader

stable

-gp

X A Y Z

shard1 shard2 shard3

2 1

Clients

Read(2)

GCed

2 4

Erwin: Read

• Reading ordered position (fast read): entry returned directly

24

A YZX Leader

stable

-gp

X A Y Z

shard1 shard2 shard3

2 1

Clients

Read(2)

X

GCed

2 4

Erwin: Read

• Reading ordered position (fast read): entry returned directly

• Reading unordered position (slow read): must wait until stable-gp is advanced to the read
position

24

A YZX Leader

stable

-gp

X A Y Z

shard1 shard2 shard3

2 1

Clients

Read(2)

X Read(4)

GCed

2 4

Erwin: Read

• Reading ordered position (fast read): entry returned directly

• Reading unordered position (slow read): must wait until stable-gp is advanced to the read
position

24

A YZX Leader

stable

-gp

X A Y Z

shard1 shard2 shard3

2 1 4 3

Clients

Read(2)

X Read(4)

GCed

2 4

Erwin: Read

• Reading ordered position (fast read): entry returned directly

• Reading unordered position (slow read): must wait until stable-gp is advanced to the read
position

24

A YZX Leader

stable

-gp

X A Y Z

shard1 shard2 shard3

2 1 4 3

Clients

Read(2)

X Read(4)

GCed

2 4

GCed

Erwin: Read

• Reading ordered position (fast read): entry returned directly

• Reading unordered position (slow read): must wait until stable-gp is advanced to the read
position

24

A YZX Leader

stable

-gp

X A Y Z

shard1 shard2 shard3

2 1 4 3

Clients

Read(2)

X Read(4)

GCed

2 4

GCed

Erwin: Read

• Reading ordered position (fast read): entry returned directly

• Reading unordered position (slow read): must wait until stable-gp is advanced to the read
position

24

A YZX Leader

stable

-gp

X A Y Z

shard1 shard2 shard3

2 1 4 3

Clients

Read(2)

X Read(4)

Y

GCed

2 4

GCed

Outline

Introduction

Motivation

LazyLog Insight and Interface

LazyLog System Design

Performance Evaluation

25

Performance Evaluation

• What’s the latency benefit of lazy ordering?

• How do reads perform in LazyLog?

• Do end applications benefit?

26

What’s the Latency Benefit of Lazy Ordering?

27

What’s the Latency Benefit of Lazy Ordering?

Workload: 4KB record append-only

3 replicas per shard with 5 shards

27

What’s the Latency Benefit of Lazy Ordering?

Workload: 4KB record append-only

3 replicas per shard with 5 shards

Erwin reduces append latency

27

3.6x

2.8x

0

20

40

60

80

100

mean p99

Latency

(us)

Append Latency

Corfu Erwin

What’s the Latency Benefit of Lazy Ordering?

Workload: 4KB record append-only

3 replicas per shard with 5 shards

Erwin reduces append latency

• Avg: By 3.6x compared to Corfu

• P99: By 2.8x compared to Corfu

27

3.6x

2.8x

0

20

40

60

80

100

mean p99

Latency

(us)

Append Latency

Corfu Erwin

How Do Reads Perform in LazyLog?

28

How Do Reads Perform in LazyLog?

4KB record read after append

28

How Do Reads Perform in LazyLog?

4KB record read after append

28

0

15

30

45

60

75

append read

Avg Latency

(us)

Readers Lag Behind Writers

Corfu Erwin

How Do Reads Perform in LazyLog?

4KB record read after append

28

0

15

30

45

60

75

append read

Avg Latency

(us)

Readers Lag Behind Writers

Corfu Erwin

0

15

30

45

60

75

append read

Avg Latency

(us)

No Lag Between Readers and Writers

Corfu Erwin

How Do Reads Perform in LazyLog?

4KB record read after append

For many applications in which reads lag
behind writes:

28

0

15

30

45

60

75

append read

Avg Latency

(us)

Readers Lag Behind Writers

Corfu Erwin

0

15

30

45

60

75

append read

Avg Latency

(us)

No Lag Between Readers and Writers

Corfu Erwin

How Do Reads Perform in LazyLog?

4KB record read after append

For many applications in which reads lag
behind writes:

• Erwin achieves low append latency and
read latency

28

0

15

30

45

60

75

append read

Avg Latency

(us)

Readers Lag Behind Writers

Corfu Erwin

0

15

30

45

60

75

append read

Avg Latency

(us)

No Lag Between Readers and Writers

Corfu Erwin

How Do Reads Perform in LazyLog?

4KB record read after append

For many applications in which reads lag
behind writes:

• Erwin achieves low append latency and
read latency

In the worst case when there is no lag:

28

0

15

30

45

60

75

append read

Avg Latency

(us)

Readers Lag Behind Writers

Corfu Erwin

0

15

30

45

60

75

append read

Avg Latency

(us)

No Lag Between Readers and Writers

Corfu Erwin

How Do Reads Perform in LazyLog?

4KB record read after append

For many applications in which reads lag
behind writes:

• Erwin achieves low append latency and
read latency

In the worst case when there is no lag:

• Erwin shifts ordering cost from append
to read

28

0

15

30

45

60

75

append read

Avg Latency

(us)

Readers Lag Behind Writers

Corfu Erwin

0

15

30

45

60

75

append read

Avg Latency

(us)

No Lag Between Readers and Writers

Corfu Erwin

How Do Reads Perform in LazyLog?

4KB record read after append

For many applications in which reads lag
behind writes:

• Erwin achieves low append latency and
read latency

In the worst case when there is no lag:

• Erwin shifts ordering cost from append
to read

• Append + read latency remains the
same

28

0

15

30

45

60

75

append read

Avg Latency

(us)

Readers Lag Behind Writers

Corfu Erwin

0

15

30

45

60

75

append read

Avg Latency

(us)

No Lag Between Readers and Writers

Corfu Erwin

Do End Apps Benefit from LazyLog?

29

Do End Apps Benefit from LazyLog?

29

Built 3 Apps: KV Store, Audit Log, and Journal for stream processing system

Do End Apps Benefit from LazyLog?

KV Store (decoupled WR-er and RD-er):

Append to log on PUTs

Reader reads log, constructs state, serves
GETs

29

3.41x 2.56x 1.04x

0

15

30

45

write-only write-heavy read-heavy

Avg

Latency

(us)

KV-Corfu KV-Erwin

Built 3 Apps: KV Store, Audit Log, and Journal for stream processing system

Do End Apps Benefit from LazyLog?

KV Store (decoupled WR-er and RD-er):

Append to log on PUTs

Reader reads log, constructs state, serves
GETs

29

3.41x 2.56x 1.04x

0

15

30

45

write-only write-heavy read-heavy

Avg

Latency

(us)

KV-Corfu KV-Erwin

Built 3 Apps: KV Store, Audit Log, and Journal for stream processing system

Do End Apps Benefit from LazyLog?

KV Store (decoupled WR-er and RD-er):

Append to log on PUTs

Reader reads log, constructs state, serves
GETs

Erwin benefits applications by reducing
ingestion latency

29

3.41x 2.56x 1.04x

0

15

30

45

write-only write-heavy read-heavy

Avg

Latency

(us)

KV-Corfu KV-Erwin

Built 3 Apps: KV Store, Audit Log, and Journal for stream processing system

Do End Apps Benefit from LazyLog?

KV Store (decoupled WR-er and RD-er):

Append to log on PUTs

Reader reads log, constructs state, serves
GETs

Erwin benefits applications by reducing
ingestion latency

• Benefit is more pronounced when shared-
log interaction takes significant partition
of app request execution

29

3.41x 2.56x 1.04x

0

15

30

45

write-only write-heavy read-heavy

Avg

Latency

(us)

KV-Corfu KV-Erwin

Built 3 Apps: KV Store, Audit Log, and Journal for stream processing system

More in the Paper

• More experiments in the paper

• Another implementation:

• Erwin-bb (black-box): Treat shards as black boxes. Can work with any
PB/Raft shard or even Kafka.

See our paper for more details

30

Summary

31

Summary

• Eager-ordering shared logs incur high latencies, impacts app performance

31

Summary

• Eager-ordering shared logs incur high latencies, impacts app performance

• Eager ordering is not needed for many applications and readers are time-decoupled from
writers

31

Summary

• Eager-ordering shared logs incur high latencies, impacts app performance

• Eager ordering is not needed for many applications and readers are time-decoupled from
writers

• LazyLog – a new shared-log abstraction that defers ordering

31

Summary

• Eager-ordering shared logs incur high latencies, impacts app performance

• Eager ordering is not needed for many applications and readers are time-decoupled from
writers

• LazyLog – a new shared-log abstraction that defers ordering

• Low ingestion latency with little overhead upon reads

31

Summary

• Eager-ordering shared logs incur high latencies, impacts app performance

• Eager ordering is not needed for many applications and readers are time-decoupled from
writers

• LazyLog – a new shared-log abstraction that defers ordering

• Low ingestion latency with little overhead upon reads

• LazyLog systems deliver benefits for applications

31

Summary

• Eager-ordering shared logs incur high latencies, impacts app performance

• Eager ordering is not needed for many applications and readers are time-decoupled from
writers

• LazyLog – a new shared-log abstraction that defers ordering

• Low ingestion latency with little overhead upon reads

• LazyLog systems deliver benefits for applications

31

Available on GitHub:
https://github.com/dassl-uiuc/LazyLog-Artifact

https://github.com/dassl-uiuc/LazyLog-Artifact

Summary

• Eager-ordering shared logs incur high latencies, impacts app performance

• Eager ordering is not needed for many applications and readers are time-decoupled from
writers

• LazyLog – a new shared-log abstraction that defers ordering

• Low ingestion latency with little overhead upon reads

• LazyLog systems deliver benefits for applications

31

Available on GitHub:
https://github.com/dassl-uiuc/LazyLog-Artifact

Xuhao Luo Shreesha G.
Bhat*

Jiyu Hu*

Ram
Alagappan

Aishwarya
Ganesan

https://github.com/dassl-uiuc/LazyLog-Artifact

	Slide 1: LazyLog: A New Shared Log Abstraction for Low-Latency Applications
	Slide 2: Shared Log: Abstraction and Interface
	Slide 3: Shared Log: Abstraction and Interface
	Slide 4: Shared Log: Abstraction and Interface
	Slide 5: Shared Log: Abstraction and Interface
	Slide 6: Shared Log: Abstraction and Interface
	Slide 7: Shared Log: Abstraction and Interface
	Slide 8: Shared Log: Abstraction and Interface
	Slide 9: Shared Log: Abstraction and Interface
	Slide 10: Shared Log: Abstraction and Interface
	Slide 11: The Problem with Current Shared Logs
	Slide 12: The Problem with Current Shared Logs
	Slide 13: The Problem with Current Shared Logs
	Slide 14: The Problem with Current Shared Logs
	Slide 15: The Problem with Current Shared Logs
	Slide 16: The Problem with Current Shared Logs
	Slide 17: Can a shared log avoid eager ordering, yet also preserve the ordering guarantees of conventional shared logs?
	Slide 18: LazyLog: Idea and Abstraction
	Slide 19: LazyLog: Idea and Abstraction
	Slide 20: LazyLog: Idea and Abstraction
	Slide 21: LazyLog: Idea and Abstraction
	Slide 22: LazyLog: Idea and Abstraction
	Slide 23: LazyLog: Idea and Abstraction
	Slide 24: LazyLog: Idea and Abstraction
	Slide 25: LazyLog: Idea and Abstraction
	Slide 26: Results Overview
	Slide 27: Results Overview
	Slide 28: Results Overview
	Slide 29: Results Overview
	Slide 30: Results Overview
	Slide 31: Outline
	Slide 32: Total Ordering in Shared Logs
	Slide 33: Total Ordering in Shared Logs
	Slide 34: Total Ordering in Shared Logs
	Slide 35: Total Ordering in Shared Logs
	Slide 36: Total Ordering in Shared Logs
	Slide 37: Eager Ordering  High Latency
	Slide 38: Eager Ordering  High Latency
	Slide 39: Eager Ordering  High Latency
	Slide 40: Eager Ordering  High Latency
	Slide 41: Eager Ordering  High Latency
	Slide 42: Eager Ordering  High Latency
	Slide 43: Eager Ordering  High Latency
	Slide 44: Eager Ordering  High Latency
	Slide 45: Eager Ordering  High Latency
	Slide 46: Eager Ordering  High Latency
	Slide 47: Eager Ordering  High Latency
	Slide 48: Eager Ordering  High Latency
	Slide 49: Eager Ordering  High Latency
	Slide 50: Eager Ordering  High Latency
	Slide 51: Eager Ordering  High Latency
	Slide 52: Eager Ordering  High Latency
	Slide 53: Low-Latency Ingestion is Critical for Apps
	Slide 54: Low-Latency Ingestion is Critical for Apps
	Slide 55: Low-Latency Ingestion is Critical for Apps
	Slide 56: Low-Latency Ingestion is Critical for Apps
	Slide 57: Outline
	Slide 58: Insight
	Slide 59: Insight
	Slide 60: Insight
	Slide 61: Insight
	Slide 62: Holds for Many Apps
	Slide 63: Holds for Many Apps
	Slide 64: Holds for Many Apps
	Slide 65: Holds for Many Apps
	Slide 66: Holds for Many Apps
	Slide 67: Application Study
	Slide 68: Application Study
	Slide 69: Application Study
	Slide 70: Application Study
	Slide 71: Application Study
	Slide 72: Application Study
	Slide 73: LazyLog: Abstraction and Interface
	Slide 74: LazyLog: Abstraction and Interface
	Slide 75: LazyLog: Abstraction and Interface
	Slide 76: LazyLog: Abstraction and Interface
	Slide 77: LazyLog: Abstraction and Interface
	Slide 78: LazyLog: Abstraction and Interface
	Slide 79: LazyLog: Abstraction and Interface
	Slide 80: LazyLog: Abstraction and Interface
	Slide 81: Performance Property
	Slide 82: Performance Property
	Slide 83: Performance Property
	Slide 84: Performance Property
	Slide 85: Performance Property
	Slide 86: Performance Property
	Slide 87: Performance Property
	Slide 88: Performance Property
	Slide 89: Performance Property
	Slide 90: Performance Property
	Slide 91: Related Work
	Slide 92: Related Work
	Slide 93: Related Work
	Slide 94: Related Work
	Slide 95: Related Work
	Slide 96: Related Work
	Slide 97: Related Work
	Slide 98: Related Work
	Slide 99: Outline
	Slide 100: System Design
	Slide 101: System Design
	Slide 102: System Design
	Slide 103: System Design
	Slide 104: Erwin’s Goal: 1-RTT Append
	Slide 105: Erwin’s Goal: 1-RTT Append
	Slide 106: Erwin’s Goal: 1-RTT Append
	Slide 107: Erwin’s Goal: 1-RTT Append
	Slide 108: Erwin’s Goal: 1-RTT Append
	Slide 109: Erwin’s Goal: 1-RTT Append
	Slide 110: Erwin’s Goal: 1-RTT Append
	Slide 111: Erwin’s Goal: 1-RTT Append
	Slide 112: Erwin: 1-RTT Append
	Slide 113: Erwin: 1-RTT Append
	Slide 114: Erwin: 1-RTT Append
	Slide 115: Erwin: 1-RTT Append
	Slide 116: Erwin: 1-RTT Append
	Slide 117: Erwin: 1-RTT Append
	Slide 118: Erwin: 1-RTT Append
	Slide 119: Correct Lazy Sequencing
	Slide 120: Correct Lazy Sequencing
	Slide 121: Correct Lazy Sequencing
	Slide 122: Correct Lazy Sequencing
	Slide 123: Correct Lazy Sequencing
	Slide 124: Correct Lazy Sequencing
	Slide 125: Correct Lazy Sequencing
	Slide 126: Handle Sequencing Leader Failure
	Slide 127: Handle Sequencing Leader Failure
	Slide 128: Handle Sequencing Leader Failure
	Slide 129: Handle Sequencing Leader Failure
	Slide 130: Handle Sequencing Leader Failure
	Slide 131: Handle Sequencing Leader Failure
	Slide 132: Handle Sequencing Leader Failure
	Slide 133: Handle Sequencing Leader Failure
	Slide 134: Handle Sequencing Leader Failure
	Slide 135: Handle Sequencing Leader Failure
	Slide 136: Erwin: Read
	Slide 137: Erwin: Read
	Slide 138: Erwin: Read
	Slide 139: Erwin: Read
	Slide 140: Erwin: Read
	Slide 141: Erwin: Read
	Slide 142: Erwin: Read
	Slide 143: Erwin: Read
	Slide 144: Outline
	Slide 145: Performance Evaluation
	Slide 146: What’s the Latency Benefit of Lazy Ordering?
	Slide 147: What’s the Latency Benefit of Lazy Ordering?
	Slide 148: What’s the Latency Benefit of Lazy Ordering?
	Slide 149: What’s the Latency Benefit of Lazy Ordering?
	Slide 150: How Do Reads Perform in LazyLog?
	Slide 151: How Do Reads Perform in LazyLog?
	Slide 152: How Do Reads Perform in LazyLog?
	Slide 153: How Do Reads Perform in LazyLog?
	Slide 154: How Do Reads Perform in LazyLog?
	Slide 155: How Do Reads Perform in LazyLog?
	Slide 156: How Do Reads Perform in LazyLog?
	Slide 157: How Do Reads Perform in LazyLog?
	Slide 158: How Do Reads Perform in LazyLog?
	Slide 159: Do End Apps Benefit from LazyLog?
	Slide 160: Do End Apps Benefit from LazyLog?
	Slide 161: Do End Apps Benefit from LazyLog?
	Slide 162: Do End Apps Benefit from LazyLog?
	Slide 163: Do End Apps Benefit from LazyLog?
	Slide 164: Do End Apps Benefit from LazyLog?
	Slide 165: More in the Paper
	Slide 166: Summary
	Slide 167: Summary
	Slide 168: Summary
	Slide 169: Summary
	Slide 170: Summary
	Slide 171: Summary
	Slide 172: Summary
	Slide 173: Summary

