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• State-of-the-art implementations suffer from high ingestion latencies
• Append takes multiple RTTs in Scalog, Corfu, etc.

• Low ingestion latency is critical to applications

• Rooted in eager ordering nature of shared logs:
• Order is established eagerly upon appends

• Position of record is decided by the time append completes



Can a shared log avoid eager ordering, yet also
preserve the ordering guarantees of conventional shared logs?
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Results Overview

• Implemented LazyLog abstraction

• Offers 1-RTT appends, greatly reduce ingestion latency while providing 
linearizability

• As opposed to multiple RTTs in Scalog and Corfu

• Nearly no overhead on reads

• Benefits end apps like KV store, audit-logging, checkpointing with LazyLog’s 
low latency
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Total Ordering in Shared Logs
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• Linearizable ordering: if append(B) starts 
after append(A) completes, then B appears 
after A in the shared log

• Shards

• Ordering Layer

Shared log provides total order across shards

Ordering Layer

Shard-1

primary backup primary backup

Shard-2

Shard-3

primary backup primary backup

Shard-4

1 1 2 2

3 3 4 4
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Shared logs today incur high ingestion latency

Rooted in eager ordering

Both durability and global ordering are 
completed before getting back to clients

• Scalog
• durability first
• then global ordering
• 3.5RTT + batch interval

• Corfu
• global ordering first
• then durability
• 3RTT

Results in high ingestion latency for applications

Clients

Ordering Layer

Shard-1

primary backup primary backup

Shard-2
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Distributed databases

e.g., FireScroll built atop RedPanda requires quick durability

Similarly, event sourcing, journaling for FT, and log aggregation require low-latency 
logging

A 2023 survey by RedPanda:

1/3 of 300 practitioners rated

ingestion latency as the primary

latency metric they care about
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Insight

Although linearizable order is necessary, in many applications,

it is not needed eagerly upon ingestion

But only later upon reads

And readers are naturally decoupled temporally from writers

A shared log can thus defer ordering upon appends
But establish it before reads arrive 
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Holds for Many Apps

Example: reader-writer decoupled databases like FireScroll

① Writers do not require or use the appended index immediately

② Readers must apply updates in linearizable order to construct the correct state

③ Readers and writers are time-decoupled: readers typically lag behind writers

13

writers
readers Time lag
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LazyLog’s insights also hold for them

oEvent Sourcing oReaders lag behind writers to 
avoid interference

oActivity logging oAnalytic jobs lag behind writers

o Log aggregation o Logs are only read much later 
during debugging

oHigh-availability journaling o Journal is accessed only upon 
failures
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LazyLog: Abstraction and Interface

Abstraction

o LazyLog doesn’t bind a record to a 
position upon append
o Only makes the record durable
o Guarantee the record will be 

eventually bound to correct position

o LazyLog lazily binds records to 
positions and enforces ordering 
before the positions can be read

Interface

// append to log; return true if record 
is durable 

bool append(record r); 

// read ‘len’ records starting at ‘from’ 

list read(logpos_t from, uint64_t len); 

15

Index is not returned!
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• Cannot be too lazy – keep ordering in the background

• For many apps – reads are always fast

• Even if immediately read, LazyLog preserves the performance of eager shared logs
• never worse than an eager-ordering shared log!

Performance Property
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Append (always fast)

durable but yet-to-be ordereddurable & ordered

Bg ordering

Read (fast) Read (slow)
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LazyLog is inspired by the general idea of deferring work until needed

Exploited in other contexts like filesystems (Speculator[SOSP’05]) and databases (Lazy 
Eval Txn[SIGMOD’14])

Also in distributed systems

• Skyros[SOSP’21]: defer ordering within a single shard

• Occult[NSDI’17]: defer ordering across shards, but only provides causal ordering

• LazyLog: First shared log to offer linearizable ordering across shards with low 
latency by deferring ordering

• Enabled by our new observations about modern shared-log applications
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Designed an implementation of the LazyLog interface:  Erwin

Offers linearizable ordering across shards with 1-RTT appends

Offers about a million 4KB appends/sec on our testbed
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Correct Lazy Sequencing

• Intuition: If append(B) follows append(A) in real-time, all logs will capture that dependency

• Example: actual ordering is (A|||X) → (Z|||Y): Captured by all replicas

• Assign one sequencing replica as leader to decide the order

• Send leader’s order to shards
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Performance Evaluation

• What’s the latency benefit of lazy ordering?

• How do reads perform in LazyLog?

• Do end applications benefit?
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What’s the Latency Benefit of Lazy Ordering?

Workload: 4KB record append-only

3 replicas per shard with 5 shards

Erwin reduces append latency

• Avg: By 3.6x compared to Corfu

• P99: By 2.8x compared to Corfu
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How Do Reads Perform in LazyLog?

4KB record read after append

For many applications in which reads lag 
behind writes:

• Erwin achieves low append latency and 
read latency

In the worst case when there is no lag:

• Erwin shifts ordering cost from append 
to read

• Append + read latency remains the 
same
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Do End Apps Benefit from LazyLog?

KV Store (decoupled WR-er and RD-er):

Append to log on PUTs

Reader reads log, constructs state, serves 
GETs

Erwin benefits applications by reducing 
ingestion latency

• Benefit is more pronounced when shared-
log interaction takes significant partition 
of app request execution
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More in the Paper

• More experiments in the paper

• Another implementation:

• Erwin-bb (black-box): Treat shards as black boxes. Can work with any 
PB/Raft shard or even Kafka. 

See our paper for more details
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