
Automating Cutoff-based
Verification of Distributed

Protocols
Shreesha G. Bhat* and Kartik Nagar

Department of CSE, IIT Madras

1

*currently PhD student at University of Illinois Urbana-Champaign

• Independent nodes communicate
→ accomplish task

• Backbone of modern-day cloud
systems

• Used in correctness critical systems
- incorrect protocols have
disastrous consequences

• Need for verification!

Distributed Protocols

2

Distributed Protocols

• Parametric nature - must work with any number of nodes

• Send and receive messages - must work under adverse network
conditions

3

Distributed Protocols

• Parametric nature - must work with any number of nodes

• Send and receive messages - must work under adverse network
conditions

3

A B

Dropped

Distributed Protocols

• Parametric nature - must work with any number of nodes

• Send and receive messages - must work under adverse network
conditions

3

A B

Dropped

A B

Duplicate

Distributed Protocols

• Parametric nature - must work with any number of nodes

• Send and receive messages - must work under adverse network
conditions

3

A B

Dropped

A B

Duplicate

A B

Delayed

Specifying Correctness

• Safety Property - describes ”bad states” that should never be reached

• Must always be obeyed by all nodes

4

Specifying Correctness

• Safety Property - describes ”bad states” that should never be reached

• Must always be obeyed by all nodes

4

A B C

I’m the
leader
too!

I’m the
leader!

Challenges with Verification

• Complex designs - co-ordination is hard!

• Designed to work under all possible network behaviors. Must reason
about protocol behavior under these conditions

• Parametric nature → ∞ number of possible instantiations

• Subtle behaviors and corner cases are easy to miss

5

Example Protocol: Sharded Key-Value Store

6

A

k1 v1

k2 v2

B

k3 v3

C

k4 v4

Example Protocol: Sharded Key-Value Store

6

A

k1 v1

k2 v2

B

k3 v3

C

k4 v4

put(k1, v1’)

Example Protocol: Sharded Key-Value Store

7

A

k1 v1’

k2 v2

B

k3 v3

C

k4 v4

Example Protocol: Sharded Key-Value Store

8

A

k1 v1’

k2 v2

B

k3 v3

C

k4 v4

⟨k2, v2, s⟩

Example Protocol: Sharded Key-Value Store

8

A

k1 v1’

k2 v2

B

k3 v3

C

k4 v4

⟨k2, v2, s⟩

Example Protocol: Sharded Key-Value Store

8

A

k1 v1’

k2 v2

B

k3 v3

C

k4 v4

Example Protocol: Sharded Key-Value Store

8

A

k1 v1’

k2 v2

B

k3 v3

C

k4 v4

retransmit

Example Protocol: Sharded Key-Value Store

8

A

k1 v1’

k2 v2

B

k3 v3

C

k4 v4

retransmit

⟨k2, v2, s⟩

Example Protocol: Sharded Key-Value Store

9

A

k1 v1’

k2 v2

B

k3 v3

k2 v2

C

k4 v4

Example Protocol: Sharded Key-Value Store

9

A

k1 v1’

k2 v2

B

k3 v3

k2 v2

C

k4 v4

⟨ack s⟩

Example Protocol: Sharded Key-Value Store

9

A

k1 v1’

k2 v2

B

k3 v3

k2 v2

C

k4 v4

⟨ack s⟩

Example Protocol: Sharded Key-Value Store

9

A

k1 v1’

k2 v2

B

k3 v3

k2 v2

C

k4 v4

Example Protocol: Sharded Key-Value Store

9

A

k1 v1’

k2 v2

B

k3 v3

k2 v2

C

k4 v4

retransmit

Example Protocol: Sharded Key-Value Store

9

A

k1 v1’

k2 v2

B

k3 v3

k2 v2

C

k4 v4

retransmit

⟨ack s⟩

Example Protocol: Sharded Key-Value Store

10

A

k1 v1’

B

k3 v3

k2 v2

C

k4 v4

Example Protocol: Sharded Key-Value Store

Safety – a single associated value per key across the nodes

Why sequence numbers?

• Unique, not reused

• Distinguish stale transfers from new ones

• Prevent safety issues
• Old key is re-entered after subsequent transfer

• Old key is re-entered after subsequent KVP modification

Complex logic!

11

Verifying Distributed Protocols: Inductive
Invariants
• Property 𝜑 that is satisfied at each step

• Strong enough to imply the safety property

12

s0 s1 s2 s3

Satisfy 𝜑

…

Verifying Distributed Protocols: Inductive
Invariants
• Traditional approach to

verifying distributed protocols

• Hard to automatically
synthesize
• Must address how protocol

blocks all bad behaviors

• Cannot avoid intricacies of
protocol

13

s b2

b1

b3

Cutoff-based Approach

14

• ‘small scope hypothesis’ – erroneous behaviors occur within small
scopes

• Cutoff instance – fixed size instance such that a violation in any
arbitrary sized instance can be re-produced in the cutoff instance

• Correctness of cutoff instance implies correctness of any arbitrary
sized instance

• Cutoff instance is of fixed, finite size → correctness established by
finite-state model checking

Cutoff-based Approach: Advantages

Cleanly separates the two main roadblocks with verification

15

Dealing with infinite
instantiations

Reasoning about
complex protocol

and network
behavior

Having a correct cutoff
instance absolves us from
dealing with infinite
instantiations

Complexity encapsulated
within the cutoff instance.
Delegated to finite-state
model checking!

Our Contributions

• Automate the process of finding and proving a cutoff instance

• Static Analysis - identify key state components and actions
responsible for a violation in any instance

• Simulate this violation in the cutoff instance

• Efficient encoding of validity of cutoff instance in SMT

• Generalizable across classes of protocols!

16

Simulation-based approach

17

L

C

L

C

move in lock-
step

(L, C) inductively satisfy
a simulation relation

simulation relation
preserves violations i.e.
If L has a violation, C
also has a violation

Motivating Example: Sharded Key-Value Store

18

Feldman, Y.M.Y., Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5_23

Motivating Example: Sharded Key-Value Store

19

parameters

guard

Feldman, Y.M.Y., Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5_23

Motivating Example: Sharded Key-Value Store

19

parameters

guard

Feldman, Y.M.Y., Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5_23

Motivating Example: Sharded Key-Value Store

19

parameters

guard

Feldman, Y.M.Y., Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5_23

Motivating Example: Sharded Key-Value Store

20

Feldman, Y.M.Y., Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5_23

Motivating Example: Sharded Key-Value Store

20

Feldman, Y.M.Y., Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5_23

Motivating Example: Sharded Key-Value Store

20

Feldman, Y.M.Y., Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5_23

Identifying Key State Components and Actions

• Instantiate a violation in an arbitrary instance

• How would such a state manifest? What actions set these relation
entries?

• Collect relevant actions

21

table(AL, K, V1) ∧ table(BL, K, V2)

A = { RecvTransferMsg(*, ⟨AL/BL⟩, K, ⟨V1/V2⟩, *), Put(⟨AL/BL⟩, K, ⟨V1/V2⟩) }

Sinit = { table(⟨AL/BL⟩, K, ⟨V1/V2⟩) }

Identifying Key State Components and Actions

• What state components are required for these actions to fire →
examine guards of actions

• Add these entries to the set of relevant state components

• Iterate until convergence!

22

S = { table(⟨AL/BL⟩, K, ⟨V1/V2⟩),
 transfer_msg(*, ⟨AL/BL⟩, K, ⟨V1/V2⟩, *),
 table(⟨AL/BL⟩, K, *) }

Identifying Key Components and Actions

23

S = { table(*, K, *),
 transfer_msg(*, *, K, *, *),
 ¬seqnum_recvd(*),
 ¬seqnum_sent(*),
 unacked(*, *, K, *, *) }

A = { Put(*, K, *),
 RecvTransferMsg(*, *, K, *, *),
 Reshard(*, *, K, *, *),
 Retransmit(*, *, K, *, *) }

Observations

• Original protocol → 8 actions, static analysis → 4 actions – Most
actions are not relevant to simulate a violation!

• How does protocol avoid violation → complex!!

• How to simulate hypothetical violation → avoid complexity

• Need only ensure that these components are preserved in cutoff
system to simulate violation

24

Cutoff Instance

How many nodes do we need?

• Instantiate violation of safety property → table(AL, K, V1) ∧
table(BL, K, V2)

• Violations require 2 instantiated nodes → use cutoff instance of size 2

25

Synthesizing the components of the
simulation
Consider the arbitrary sized instance L and cutoff instance C

• Lock-step – Which action(s) taken in C for every action in L?

• Simulation relation – Inductive property satisfied by twin systems
when they progress as per lock-step. Must preserve violations!

Derive above from static analysis

• Every action in set A is simulated by a corresponding action in C

• Simulation relation ensures every component in set S is present in C

26

The last piece: sim mapping

How to map state components and
actions from L to C?
• Map nodes from L to C!
• sim : nodes in L → nodes in C

Simple mapping strategies work in
practice!
Assume nodes in C are AC and BC

• Map AL to AC and BL to BC

• Rest of the nodes in L all map to one of
AC or BC

27

AL

BL

Rest

AC

BC

L

C

Putting it all together

28

Simulation relationLock-step

SMT Encoding

We encode the correctness of the simulation in SMT. Three properties
need to hold

• 𝜑init – initial states of L and C satisfy simulation relation

• 𝜑step – simulation relation holds inductively as L and C move as-per
lock-step

• 𝜑safety – simulation relation ensures that if L is in a violating state, so is
C

29

Evaluation and Results

• Using Z3 as backend SMT
solver, we apply this
approach on a variety of
distributed protocols

• Approach is generalizable
across classes of
protocols

• For more details, refer to
our paper

30

Limitations

Current approach can fail in one of two ways

• Cutoff value could be higher than the one chosen in our analysis

• Simulation relation and lock-step do not work i.e. one of 𝜑init , 𝜑step or
𝜑safety do not hold

Our work takes the first step in formalizing and generalizing the ’small
scope’ hypothesis for distributed protocols

31

Conclusions

• We automate and mechanize cutoff-based proofs for distributed
protocols

• Cutoff-based approaches allow us to avoid reasoning about protocol
intricacies

• Focus on simulating hypothetical violations in a small instance

• Results show that cutoff-approaches are generalizable across classes
of protocols

• We hope that this work paves the way for more investigations into
automating cutoff proofs for more complex protocols

32

	Slide 1: Automating Cutoff-based Verification of Distributed Protocols
	Slide 2: Distributed Protocols
	Slide 3: Distributed Protocols
	Slide 4: Distributed Protocols
	Slide 5: Distributed Protocols
	Slide 6: Distributed Protocols
	Slide 7: Specifying Correctness
	Slide 8: Specifying Correctness
	Slide 9: Challenges with Verification
	Slide 10: Example Protocol: Sharded Key-Value Store
	Slide 11: Example Protocol: Sharded Key-Value Store
	Slide 12: Example Protocol: Sharded Key-Value Store
	Slide 13: Example Protocol: Sharded Key-Value Store
	Slide 14: Example Protocol: Sharded Key-Value Store
	Slide 15: Example Protocol: Sharded Key-Value Store
	Slide 16: Example Protocol: Sharded Key-Value Store
	Slide 17: Example Protocol: Sharded Key-Value Store
	Slide 18: Example Protocol: Sharded Key-Value Store
	Slide 19: Example Protocol: Sharded Key-Value Store
	Slide 20: Example Protocol: Sharded Key-Value Store
	Slide 21: Example Protocol: Sharded Key-Value Store
	Slide 22: Example Protocol: Sharded Key-Value Store
	Slide 23: Example Protocol: Sharded Key-Value Store
	Slide 24: Example Protocol: Sharded Key-Value Store
	Slide 25: Example Protocol: Sharded Key-Value Store
	Slide 26: Verifying Distributed Protocols: Inductive Invariants
	Slide 27: Verifying Distributed Protocols: Inductive Invariants
	Slide 28: Cutoff-based Approach
	Slide 29: Cutoff-based Approach: Advantages
	Slide 30: Our Contributions
	Slide 31: Simulation-based approach
	Slide 32: Motivating Example: Sharded Key-Value Store
	Slide 33: Motivating Example: Sharded Key-Value Store
	Slide 34: Motivating Example: Sharded Key-Value Store
	Slide 35: Motivating Example: Sharded Key-Value Store
	Slide 36: Motivating Example: Sharded Key-Value Store
	Slide 37: Motivating Example: Sharded Key-Value Store
	Slide 38: Motivating Example: Sharded Key-Value Store
	Slide 39: Identifying Key State Components and Actions
	Slide 40: Identifying Key State Components and Actions
	Slide 41: Identifying Key Components and Actions
	Slide 42: Observations
	Slide 43: Cutoff Instance
	Slide 44: Synthesizing the components of the simulation
	Slide 45: The last piece: sim mapping
	Slide 46: Putting it all together
	Slide 47: SMT Encoding
	Slide 48: Evaluation and Results
	Slide 49: Limitations
	Slide 50: Conclusions

