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• Independent nodes communicate 
→ accomplish task

• Backbone of modern-day cloud 
systems

• Used in correctness critical systems 
- incorrect protocols have 
disastrous consequences

• Need for verification!

Distributed Protocols
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Distributed Protocols 

• Parametric nature - must work with any number of nodes

• Send and receive messages - must work under adverse network 
conditions
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Specifying Correctness

• Safety Property - describes ”bad states” that should never be reached

• Must always be obeyed by all nodes
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Challenges with Verification

• Complex designs - co-ordination is hard!

• Designed to work under all possible network behaviors. Must reason 
about protocol behavior under these conditions 

• Parametric nature → ∞ number of possible instantiations

• Subtle behaviors and corner cases are easy to miss 
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Example Protocol: Sharded Key-Value Store
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Example Protocol: Sharded Key-Value Store 

Safety – a single associated value per key across the nodes

Why sequence numbers?

• Unique, not reused

• Distinguish stale transfers from new ones

• Prevent safety issues
• Old key is re-entered after subsequent transfer

• Old key is re-entered after subsequent KVP modification

Complex logic!
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Verifying Distributed Protocols: Inductive 
Invariants
• Property 𝜑 that is satisfied at each step

• Strong enough to imply the safety property
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Verifying Distributed Protocols: Inductive 
Invariants
• Traditional approach to 

verifying distributed protocols

• Hard to automatically 
synthesize
• Must address how protocol 

blocks all bad behaviors

• Cannot avoid intricacies of 
protocol 
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Cutoff-based Approach 
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• ‘small scope hypothesis’ – erroneous behaviors occur within small 
scopes

• Cutoff instance – fixed size instance such that a violation in any 
arbitrary sized instance can be re-produced in the cutoff instance

• Correctness of cutoff instance implies correctness of any arbitrary 
sized instance

• Cutoff instance is of fixed, finite size → correctness established by 
finite-state model checking



Cutoff-based Approach: Advantages

Cleanly separates the two main roadblocks with verification 
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Dealing with infinite 
instantiations

Reasoning about 
complex protocol 

and network 
behavior

Having a correct cutoff 
instance absolves us from 
dealing with infinite 
instantiations 

Complexity encapsulated 
within the cutoff instance. 
Delegated to finite-state 
model checking!



Our Contributions

• Automate the process of finding and proving a cutoff instance 

• Static Analysis - identify key state components and actions 
responsible for a violation in any instance

• Simulate this violation in the cutoff instance 

• Efficient encoding of validity of cutoff instance in SMT

• Generalizable across classes of protocols!
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Simulation-based approach
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Motivating Example: Sharded Key-Value Store
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Identifying Key State Components and Actions 

• Instantiate a violation in an arbitrary instance

• How would such a state manifest? What actions set these relation 
entries?

• Collect relevant actions
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table(AL, K, V1) ∧ table(BL, K, V2) 

A = { RecvTransferMsg(*, ⟨AL/BL⟩, K, ⟨V1/V2⟩, *), Put(⟨AL/BL⟩, K, ⟨V1/V2⟩) }

Sinit = { table(⟨AL/BL⟩, K, ⟨V1/V2⟩) }



Identifying Key State Components and Actions 

• What state components are required for these actions to fire → 
examine guards of actions

• Add these entries to the set of relevant state components  

• Iterate until convergence!
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S = { table(⟨AL/BL⟩, K, ⟨V1/V2⟩), 
 transfer_msg(*, ⟨AL/BL⟩, K, ⟨V1/V2⟩, *), 
 table(⟨AL/BL⟩, K, *) }



Identifying Key Components and Actions
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S = { table(*, K, *), 
 transfer_msg(*, *, K, *, *), 
 ¬seqnum_recvd(*), 
 ¬seqnum_sent(*), 
 unacked(*, *, K, *, *) }

A = { Put(*, K, *),
 RecvTransferMsg(*, *, K, *, *),
 Reshard(*, *, K, *, *), 
 Retransmit(*, *, K, *, *) }



Observations 

• Original protocol → 8 actions, static analysis → 4 actions – Most 
actions are not relevant to simulate a violation!

• How does protocol avoid violation → complex!!

• How to simulate hypothetical violation → avoid complexity

• Need only ensure that these components are preserved in cutoff 
system to simulate violation
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Cutoff Instance

How many nodes do we need? 

• Instantiate violation of safety property → table(AL, K, V1) ∧ 
table(BL, K, V2) 

• Violations require 2 instantiated nodes → use cutoff instance of size 2
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Synthesizing the components of the 
simulation
Consider the arbitrary sized instance L and cutoff instance C

• Lock-step – Which action(s) taken in C for every action in L?

• Simulation relation – Inductive property satisfied by twin systems 
when they progress as per lock-step. Must preserve violations! 

Derive above from static analysis

• Every action in set A is simulated by a corresponding action in C

• Simulation relation ensures every component in set S is present in C
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The last piece: sim mapping

How to map state components and 
actions from L to C? 
• Map nodes from L to C!
• sim : nodes in L → nodes in C

Simple mapping strategies work in 
practice!
Assume nodes in C are AC and BC

• Map AL to AC and BL to BC

• Rest of the nodes in L all map to one of 
AC or BC
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Putting it all together
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Simulation relationLock-step



SMT Encoding

We encode the correctness of the simulation in SMT. Three properties 
need to hold

• 𝜑init – initial states of L and C satisfy simulation relation

• 𝜑step – simulation relation holds inductively as L and C move as-per 
lock-step

• 𝜑safety – simulation relation ensures that if L is in a violating state, so is 
C
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Evaluation and Results

• Using Z3 as backend SMT 
solver, we apply this 
approach on a variety of 
distributed protocols

• Approach is generalizable 
across classes of 
protocols

• For more details, refer to 
our paper
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Limitations

Current approach can fail in one of two ways

• Cutoff value could be higher than the one chosen in our analysis

• Simulation relation and lock-step do not work i.e. one of 𝜑init , 𝜑step or  
𝜑safety do not hold

Our work takes the first step in formalizing and generalizing the ’small 
scope’ hypothesis for distributed protocols

31



Conclusions

• We automate and mechanize cutoff-based proofs for distributed 
protocols

• Cutoff-based approaches allow us to avoid reasoning about protocol 
intricacies

• Focus on simulating hypothetical violations in a small instance

• Results show that cutoff-approaches are generalizable across classes 
of protocols

• We hope that this work paves the way for more investigations into 
automating cutoff proofs for more complex protocols
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