fmcad.²³

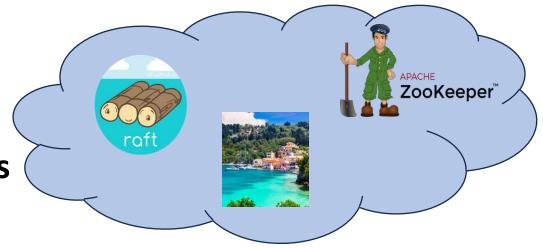
Automating Cutoff-based Verification of Distributed Protocols

Shreesha G. Bhat* and Kartik Nagar

Department of CSE, IIT Madras

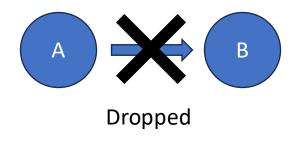
*currently PhD student at University of Illinois Urbana-Champaign

- Independent nodes communicate
 → accomplish task
- Backbone of modern-day cloud systems
- Used in correctness critical systems
 - incorrect protocols have disastrous consequences
- Need for verification!

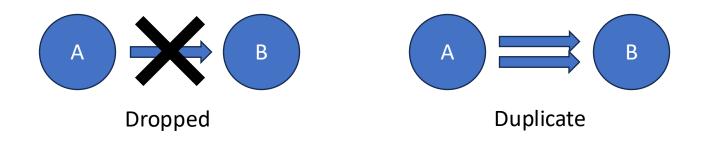


- *Parametric* nature must work with *any* number of nodes
- Send and receive messages must work under *adverse network conditions*

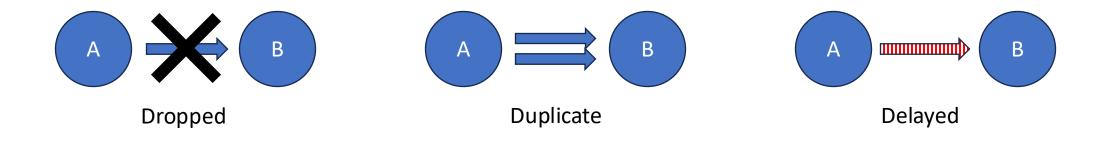
- *Parametric* nature must work with *any* number of nodes
- Send and receive messages must work under *adverse network conditions*



- *Parametric* nature must work with *any* number of nodes
- Send and receive messages must work under *adverse network conditions*



- *Parametric* nature must work with *any* number of nodes
- Send and receive messages must work under *adverse network conditions*

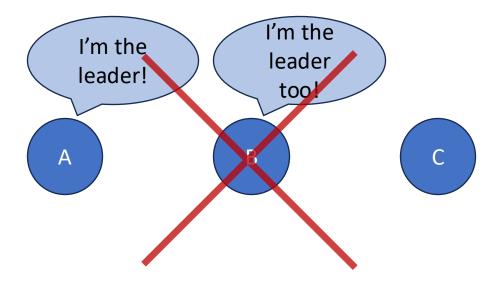


Specifying Correctness

- Safety Property describes "bad states" that should never be reached
- Must always be obeyed by all nodes

Specifying Correctness

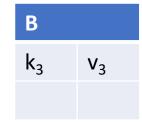
- Safety Property describes "bad states" that should never be reached
- Must always be obeyed by all nodes

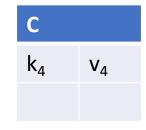


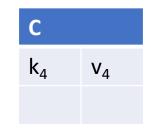
Challenges with Verification

- Complex designs co-ordination is hard!
- Designed to work under all possible network behaviors. Must reason about protocol behavior under these conditions
- Parametric nature $\rightarrow \infty$ number of possible instantiations
- Subtle behaviors and corner cases are easy to miss

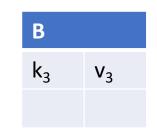
Α	
k ₁	V_1
k ₂	V ₂

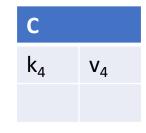


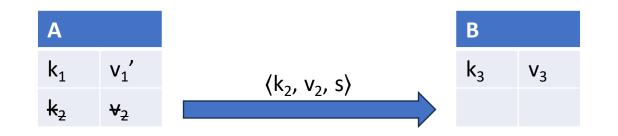


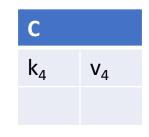


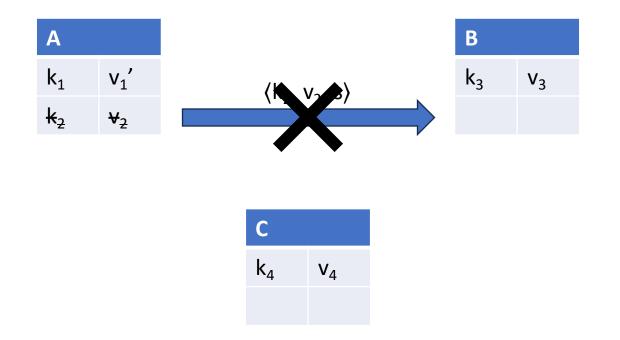
Α	
k_1	v ₁ '
k ₂	V ₂

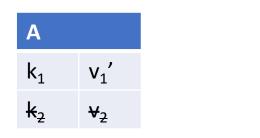


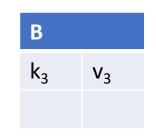


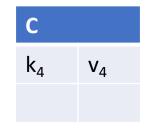


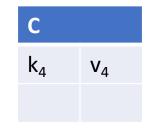


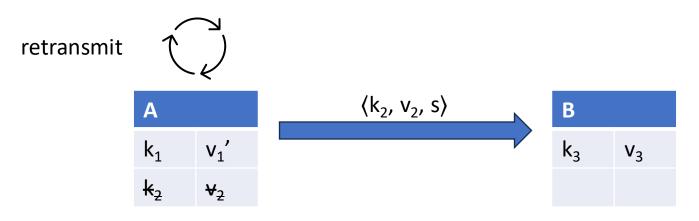


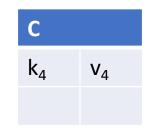




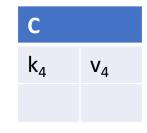


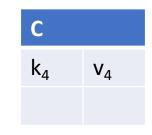


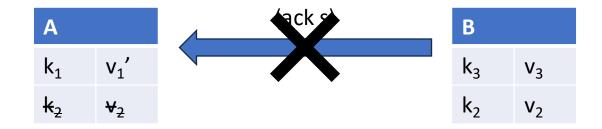


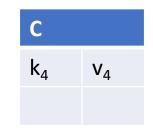


Α	
k ₁	v ₁ '
<mark>k</mark> ₂	∀ ₂

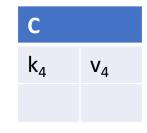


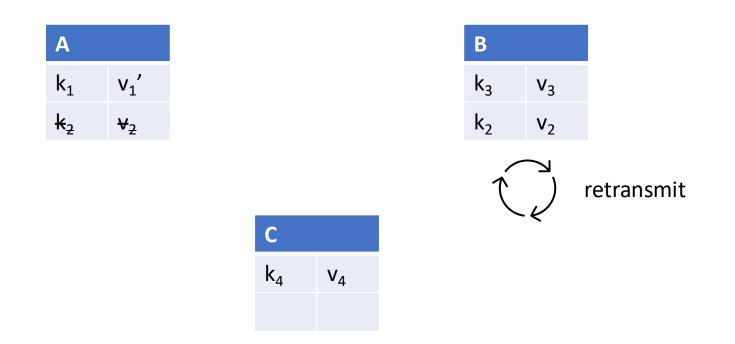


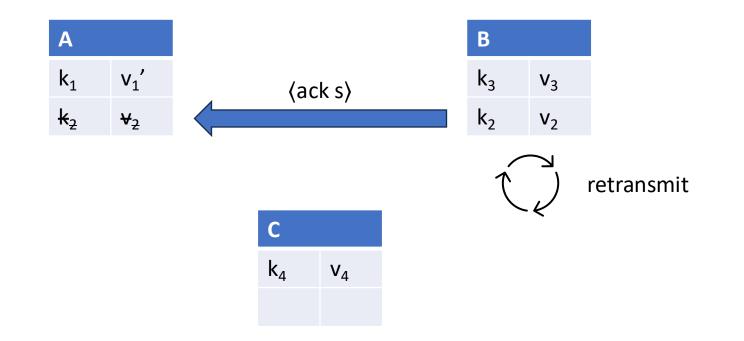


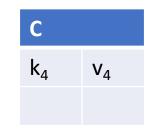


Α	
k ₁	v ₁ '
<mark>k</mark> ₂	∀ ₂









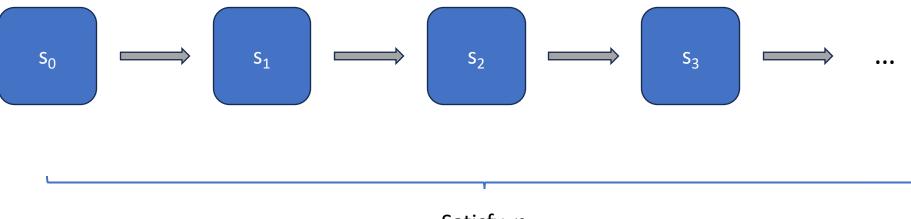
Safety – a single associated value per key across the nodes Why sequence numbers?

- Unique, not reused
- Distinguish stale transfers from new ones
- Prevent safety issues
 - Old key is re-entered after subsequent transfer
 - Old key is re-entered after subsequent KVP modification

Complex logic!

Verifying Distributed Protocols: Inductive Invariants

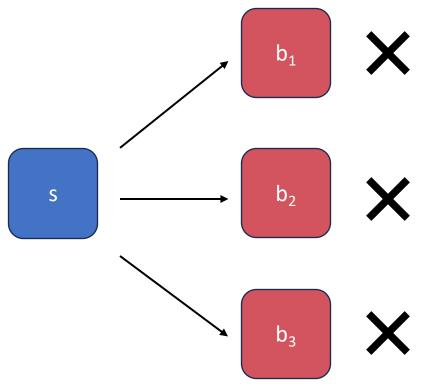
- Property φ that is satisfied at each step
- Strong enough to imply the safety property



Satisfy φ

Verifying Distributed Protocols: Inductive Invariants

- Traditional approach to verifying distributed protocols
- Hard to automatically synthesize
 - Must address how protocol blocks all bad behaviors
 - Cannot avoid intricacies of protocol

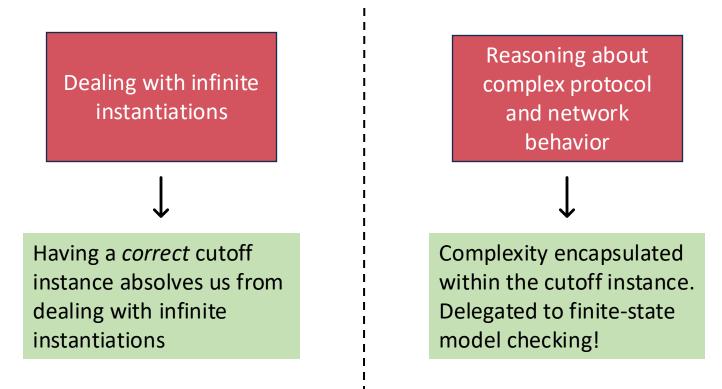


Cutoff-based Approach

- 'small scope hypothesis' erroneous behaviors occur within small scopes
- Cutoff instance fixed size instance such that a violation in any arbitrary sized instance *can be re-produced* in the cutoff instance
- Correctness of cutoff instance implies correctness of any arbitrary sized instance
- Cutoff instance is of fixed, finite size → correctness established by finite-state model checking

Cutoff-based Approach: Advantages

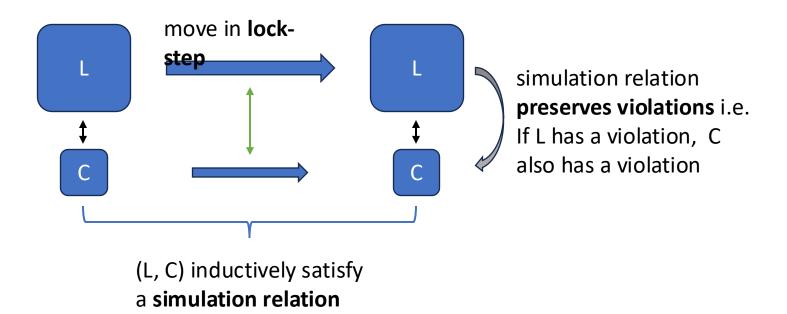
Cleanly separates the two main roadblocks with verification



Our Contributions

- Automate the process of finding and proving a cutoff instance
- *Static Analysis* identify key state components and actions responsible for a violation in any instance
- Simulate this violation in the cutoff instance
- Efficient encoding of validity of cutoff instance in SMT
- Generalizable across classes of protocols!

Simulation-based approach



```
type key, value, node, seqnum

relation table : node, key, value

relation transfer_msg : node, node, key, value, seqnum

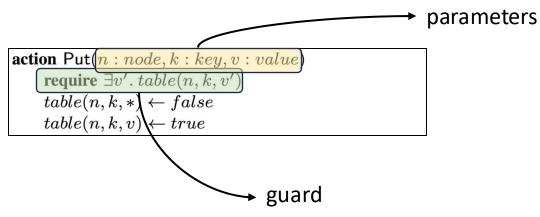
relation ack_msg : node, node, seqnum

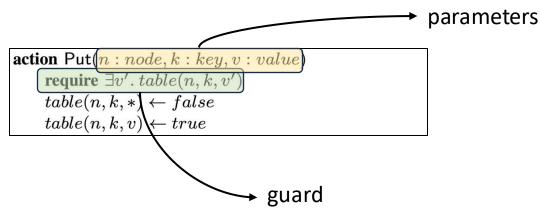
relation seqnum_sent : node, seqnum

relation unacked : node, node, key, value, seqnum

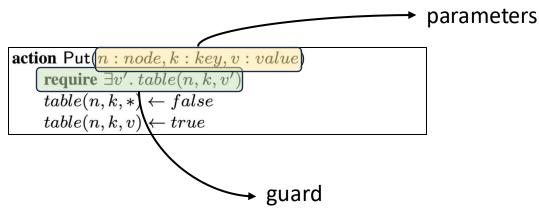
relation seqnum_recvd : node, node, seqnum

init \forall n_1, n_2, k, v_1. table(n_1, k, v_1) \land table(n_2, k, v_2) \implies n_1 = n_2 \land v_1 = v_2 \triangleright All other relations are empty
```





```
\begin{array}{l} \textbf{action } \mathsf{Reshard}(n\_old:node,n\_new:node,k:key,v:value,s:\\ seqnum)\\ \textbf{require } table(n\_old,k,v) \land \neg seqnum\_sent(s)\\ seqnum\_sent(s) \leftarrow true\\ table(n\_old,k,v) \leftarrow false\\ transfer\_msg(n\_old,n\_new,k,v,s) \leftarrow true\\ unacked(n\_old,n\_new,k,v,s) \leftarrow true \end{array}
```



action DropTransferMsg(src : node, dst : node, k : key, v : value, s : seqnum) require $transfer_msg(src, dst, k, v, s)$ $transfer_msg(src, dst, k, v, s) \leftarrow false$ action Retransmit(src : node, dst : node, k : key, v : value, s : seqnum) require $unacked(src, dst, k, v, s) \leftarrow true$

 $\begin{array}{l} \textbf{action } \mathsf{Reshard}(n_old:node,n_new:node,k:key,v:value,s:\\ seqnum)\\ \textbf{require } table(n_old,k,v) \land \neg seqnum_sent(s)\\ seqnum_sent(s) \leftarrow true\\ table(n_old,k,v) \leftarrow false\\ transfer_msg(n_old,n_new,k,v,s) \leftarrow true\\ unacked(n_old,n_new,k,v,s) \leftarrow true \end{array}$

Motivating Example: Sharded Key-Value Store

```
action RecvTransferMsg(src : node, dst : node, k : key, v : value, s : seqnum)

require transfer_msg(<math>src, dst, k, v, s) \land \neg seqnum\_recvd(s)

seqnum\_recvd(s) \leftarrow true

table(dst, k, v) \leftarrow true
```

```
action SendAck(src : node, dst : node, k : key, v : value, s : seqnum)

require transfer_msg(src, dst, k, v, s) \land seqnum_recvd(s)

ack_msg(s) \leftarrow true

action DropAckMsg(src : node, dst : node, k : key, v : value, s : seqnum)

require ack_msg(s)

ack_msg(s) \leftarrow false

action RecvAckMsg(src : node, dst : node, k : key, v : value, s : seqnum)

require ack_msg(s)

action RecvAckMsg(src : node, dst : node, k : key, v : value, s : seqnum)

require <math>ack_msg(s)

unacked(src, dst, k, v, s) \leftarrow false
```

Feldman, Y.M.Y., Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5_23

Motivating Example: Sharded Key-Value Store

```
action RecvTransferMsg(src : node, dst : node, k : key, v : value, s : seqnum)

require transfer_msg(<math>src, dst, k, v, s) \land \neg seqnum\_recvd(s)

seqnum\_recvd(s) \leftarrow true

table(dst, k, v) \leftarrow true
```

```
action SendAck(src : node, dst : node, k : key, v : value, s : seqnum)

require transfer_msg(src, dst, k, v, s) \land seqnum_recvd(s)

ack_msg(s) \leftarrow true

action DropAckMsg(src : node, dst : node, k : key, v : value, s : seqnum)

require ack_msg(s)

ack_msg(s) \leftarrow false

action RecvAckMsg(src : node, dst : node, k : key, v : value, s : seqnum)

require ack_msg(s)

unacked(src, dst, k, v, s) \leftarrow false
```

safety $\forall k, n_1, n_2, v_1, v_2, k. table(n_1, k, v_1) \land table(n_2, k, v_2) \implies$ $n_1 = n_2 \land v_1 = v_2$

Feldman, Y.M.Y., Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5_23

Identifying Key State Components and Actions

• Instantiate a violation in an arbitrary instance

table(A_L, K, V₁) \land table(B_L, K, V₂) \implies S_{init} = { table($\langle A_L/B_L \rangle$, K, $\langle V_1/V_2 \rangle$) }

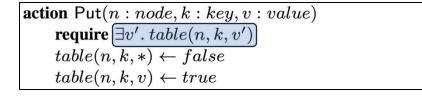
 How would such a state manifest? What actions set these relation entries?

```
\begin{array}{c} \textbf{action} \ \mathsf{Put}(n:node,k:key,v:value) \\ \textbf{require} \ \exists v'. table(n,k,v') \\ table(n,k,*) \leftarrow false \\ \hline table(n,k,v) \leftarrow true \end{array}
```

- Collect relevant actions
 - A = { RecvTransferMsg(*, $\langle A_L/B_L \rangle$, K, $\langle V_1/V_2 \rangle$, *), Put($\langle A_L/B_L \rangle$, K, $\langle V_1/V_2 \rangle$) }

Identifying Key State Components and Actions

 What state components are required for these actions to fire → examine guards of actions



• Add these entries to the set of relevant state components

 $S = \{ table(\langle A_L/B_L \rangle, K, \langle V_1/V_2 \rangle), \\ transfer_msg(*, \langle A_L/B_L \rangle, K, \langle V_1/V_2 \rangle, *), \\ table(\langle A_L/B_L \rangle, K, *) \}$

• Iterate until convergence!

Identifying Key Components and Actions

Algorithm 4 STATICANALYSIS

Arguments: P the program, S_{init} a set of clauses **Returns**: S a set of clauses, A a set of action invocations

1: procedure STATICANALYSIS(P, S_{init})

2:	$S \leftarrow S_{init}$
3:	$S_{prev} \leftarrow \emptyset$
4:	$A \leftarrow \emptyset$
5:	while $S \neq S_{prev}$ do
6:	$S_d \leftarrow S \setminus S_{prev}$
7:	$S_{prev} \leftarrow S$
8:	for each clause c in S_d do \triangleright For each new clause
9:	$A_t \leftarrow \text{ActionsThatSet}(P, c)$
10:	for each action invocation act in A_t do
11:	$S \leftarrow S \cup \operatorname{GuardsFor}(P, act)$
12:	$A \leftarrow A \cup A_t$
13:	return S, A

Observations

- Original protocol → 8 actions, static analysis → 4 actions Most actions are not relevant to simulate a violation!
- How does protocol avoid violation \rightarrow complex!!
- How to simulate hypothetical violation \rightarrow avoid complexity
- Need only ensure that these components are preserved in cutoff system to simulate violation

Cutoff Instance

How many nodes do we need?

- Instantiate violation of safety property → table(A_L, K, V₁) ∧ table(B_L, K, V₂)
- Violations require 2 instantiated nodes \rightarrow use cutoff instance of size 2

Synthesizing the components of the simulation

Consider the arbitrary sized instance L and cutoff instance C

- Lock-step Which action(s) taken in C for every action in L?
- Simulation relation Inductive property satisfied by twin systems when they progress as per lock-step. Must preserve violations!

Derive above from static analysis

- Every action in set A is simulated by a corresponding action in C
- Simulation relation ensures every component in set S is present in C

The last piece: *sim* mapping

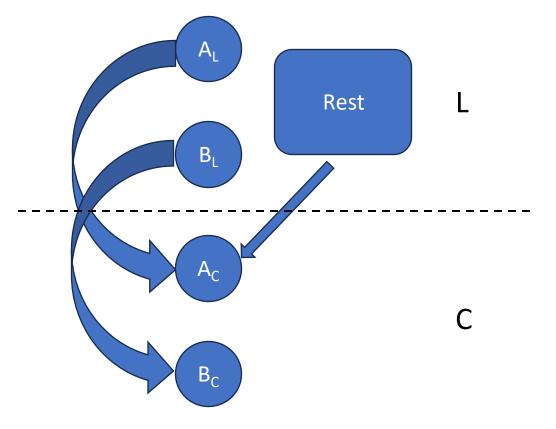
How to map state components and actions from L to C?

- Map nodes from L to C!
- sim : nodes in L \rightarrow nodes in C

Simple mapping strategies work in practice!

Assume nodes in C are A_c and B_c

- Map A_L to A_C and B_L to B_C
- Rest of the nodes in L all map to one of $A_{\rm C}$ or ${\rm B}_{\rm C}$



Putting it all together

Lock-step

(1) $Put_L(n, K, v)$ is simulated as $Put_C(sim(n), K, v)$ (2) $Reshard_L(n_1, n_2, K, v, s)$ is simulated as $Reshard_C(sim(n_1), sim(n_2), K, v, s)$ (3) $Retransmit_L(n_1, n_2, K, v, s)$ is simulated as $Retransmit_C(sim(n_1), sim(n_2), K, v, s)$ (4) $RecvTransferMsg_L(n_1, n_2, K, v, s)$ is simulated as $RecvTransferMsg_C(sim(n_1), sim(n_2), K, v, s)$ Simulation relation

(1) $table_L(n, K, v) \implies table_C(sim(n), K, v)$ (2) $unacked_L(n_1, n_2, K, v, s) \implies$ $unacked_C(sim(n_1), sim(n_2), K, v, s)$ (3) $\neg seqnum_sent_L(s) \implies \neg seqnum_sent_C(s)$ (4) $\neg seqnum_recvd_L(s) \implies \neg seqnum_recvd_C(s)$ (5) $transfer_msg_L(n_1, n_2, K, v, s) \implies$ $transfer_msg_C(sim(n_1), sim(n_2), K, v, s)$

SMT Encoding

We encode the correctness of the simulation in SMT. Three properties need to hold

- φ_{init} initial states of L and C satisfy simulation relation
- $\varphi_{\rm step}$ simulation relation holds inductively as L and C move as-per lock-step
- $\varphi_{\rm safety}$ simulation relation ensures that if L is in a violating state, so is C

Evaluation and Results

- Using Z3 as backend SMT solver, we apply this approach on a variety of distributed protocols
- Approach is generalizable across classes of protocols
- For more details, refer to our paper

Protocol	Cutoff	Time Taken(s)	$ \gamma $
Sharded Key-Value Store[15]	2	0.02	5
Leader Election in a Ring[16]	2	0.03	4
Centralized Lock Server[17]	2	0.02	5
Lock Server Sync[18]	2	0.01	2
Ricart Agrawala[19]	2	0.01	6
Two Phase Commit[20]	2	0.02	9
Toy Consensus ForAll[18]	1	0.07	5
Consensus[18]	2	29.7	11

TABLE II: γ is a FOL formula of the type $\bigwedge_{i=1}^{|\gamma|} (p \implies q)$ therefore $|\gamma|$ represents the number of clauses of the type $p \implies q$ in the simulation relation. Time taken refers to the total time taken by our synthesis+verification procedure.

Limitations

Current approach can fail in one of two ways

- Cutoff value could be higher than the one chosen in our analysis
- Simulation relation and lock-step do not work i.e. one of $\varphi_{\rm init}$, $\varphi_{\rm step}$ or $\varphi_{\rm safety}$ do not hold

Our work takes the first step in formalizing and generalizing the 'small scope' hypothesis for distributed protocols

Conclusions

- We automate and mechanize cutoff-based proofs for distributed protocols
- Cutoff-based approaches allow us to avoid reasoning about protocol intricacies
- Focus on simulating hypothetical violations in a small instance
- Results show that cutoff-approaches are generalizable across classes of protocols
- We hope that this work paves the way for more investigations into automating cutoff proofs for more complex protocols