fmcad =
Automating Cutoff-based

Verification of Distributed
Protocols

Shreesha G. Bhat™ and Kartik Nagar
Department of CSE, [IT Madras

*currently PhD student at University of Illinois Urbana-Champaign

Distributed Protocols

* Independent nodes communicate
— accomplish task

* Backbone of modern-day cloud
systems

5 APACHE "
ZooKeeper

* Used in correctness critical systems
- incorrect protocols have
disastrous consequences

* Need for verification!

Distributed Protocols

* Parametric nature - must work with any number of nodes

* Send and receive messages - must work under adverse network
conditions

Distributed Protocols

* Parametric nature - must work with any number of nodes

* Send and receive messages - must work under adverse network
conditions

0x0O

Dropped

Distributed Protocols

* Parametric nature - must work with any number of nodes

* Send and receive messages - must work under adverse network

conditions

Dropped Duplicate

Distributed Protocols

* Parametric nature - must work with any number of nodes

* Send and receive messages - must work under adverse network

conditions
00 0=0 00

Dropped Duplicate Delayed

Specifying Correctness

» Safety Property - describes “bad states” that should never be reached
* Must always be obeyed by all nodes

Specifying Correctness

» Safety Property - describes “bad states” that should never be reached
* Must always be obeyed by all nodes

Challenges with Verification

 Complex designs - co-ordination is hard!

* Designed to work under all possible network behaviors. Must reason
about protocol behavior under these conditions

* Parametric nature = o number of possible instantiations

* Subtle behaviors and corner cases are easy to miss

Example Protocol: Sharded Key-Value Store

Example Protocol: Sharded Key-Value Store

Example Protocol: Sharded Key-Value Store

Example Protocol: Sharded Key-Value Store

(kz; VZI S)

Example Protocol: Sharded Key-Value Store

Example Protocol: Sharded Key-Value Store

Example Protocol: Sharded Key-Value Store

N
retransmit '& J

Example Protocol: Sharded Key-Value Store

N
retransmit '&J
— s, D

Example Protocol: Sharded Key-Value Store

Example Protocol: Sharded Key-Value Store

— o T
e

Example Protocol: Sharded Key-Value Store

A ¥ B
Ky vy’ ks V3
k, k, Vs

Example Protocol: Sharded Key-Value Store

Example Protocol: Sharded Key-Value Store

Example Protocol: Sharded Key-Value Store

Ky Vi (ack s) ks e
k, ¥, k, Vs

Example Protocol: Sharded Key-Value Store

10

Example Protocol: Sharded Key-Value Store

Safety — a single associated value per key across the nodes
Why sequence numbers?

* Unique, not reused

* Distinguish stale transfers from new ones

* Prevent safety issues

* Old key is re-entered after subsequent transfer
* Old key is re-entered after subsequent KVP modification

Complex logic!

Verifying Distributed Protocols: Inductive
Invariants

* Property @ that is satisfied at each step
* Strong enough to imply the safety property

Satisfy ¢

12

Verifying Distributed Protocols: Inductive
Invariants

* Traditional approach to X
verifying distributed protocols /
* Hard to automatically
synthesize . x
* Must address how protocol

blocks all bad behaviors

e Cannot avoid intricacies of \
X

protocol

13

Cutoft-based Approach

* ‘small scope hypothesis’ — erroneous behaviors occur within small
scopes

* Cutoff instance — fixed size instance such that a violation in any
arbitrary sized instance can be re-produced in the cutoff instance

* Correctness of cutoff instance implies correctness of any arbitrary
sized instance

 Cutoff instance is of fixed, finite size = correctness established by
finite-state model checking

Cutoff-based Approach: Advantages

Cleanly separates the two main roadblocks with verification

Dealing with infinite

instantiations

l

Having a correct cutoff
instance absolves us from
dealing with infinite
instantiations

Reasoning about
complex protocol

and network
behavior

l

Complexity encapsulated
within the cutoff instance.
Delegated to finite-state
model checking!

15

Our Contributions

* Automate the process of finding and proving a cutoff instance

e Static Analysis - identify key state components and actions
responsible for a violation in any instance

e Simulate this violation in the cutoff instance
* Efficient encoding of validity of cutoff instance in SMT
* Generalizable across classes of protocols!

Simulation-based approach

move in Iock-
.
{

—

|

(L, C) inductively satisfy
a simulation relation

simulation relation

preserves violations i.e.

If L has a violation, C
also has a violation

17

Motivating Example: Sharded Key-Value Store

type key, value, node, seqnum

relation table : node, key, value

relation transfer_msg : node, node, key, value, segnum

relation ack_msg : node, node, seqgnum

relation seqgnum_sent : node, segnum

relation unacked : node, node, key, value, seqnum

relation seqgnum_recvd : node, node, seqgnum

init Vni,n2, k,v1. table(ny, k,v1) A table(ng, k,va) =—> mn; =
ngo N\ v1 = vg > All other relations are empty

Feldman, Y.M.Y.,, Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5 23

Motivating Example: Sharded Key-Value Store
/ —> parameters

action Put(n : node, k : key, v : value)
[require Jv’. table(n, k, v’)]
table(n, k,) + false
table(n, k,v)\« true

guard

Feldman, Y.M.Y.,, Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5 23
19

Motivating Example: Sharded Key-Value Store
/ —> parameters

action Put(n : node, k : key, v : value)
[require Jv’. table(n, k, v’)]
table(n, k,) + false
table(n, k,v)\« true

guard

action Reshard(n_old : node, n_new : node, k : key,v : value,s :
seqnum)
require table(n_old, k,v) A —seqnum_sent(s)
seqnum_sent(s) < true
table(n_old, k,v) < false
transfer_msg(n_old, n_new, k, v, s) < true
unacked(n_old, n_new, k,v, s) < true

Feldman, Y.M.Y.,, Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5 23

19

Motivating Example: Sharded Key-Value Store

_—

action Put(n : node, k : key, v : value)
[require Jv’. table(n, k, v’)]
table(n, k,) + false
table(n, k,v)\¢« true

guard

—> parameters

action DropTransferMsg(src :
value, s : seqgnum,)
require transfer_msg(src,dst, k, v, s)
transfer_msg(src,dst, k,v, s) < false
action Retransmit(src : node,dst : node, k : key,v
seqnum,)
require unacked(src, dst, k, v, s)

node, dst node, k

transfer_msg(src,dst,k,v, s) < true

key,v

: value, s :

action Reshard(n_old : node, n_new : node, k : key,v : value,s :

seqnum)
require table(n_old, k,v) A —seqnum_sent(s)
seqnum_sent(s) < true
table(n_old, k,v) < false
transfer_msg(n_old, n_new, k, v, s) < true
unacked(n_old, n_new, k,v, s) < true

Feldman, Y.M.Y.,, Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided

Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5 23

19

Motivating Example: Sharded Key-Value Store

action RecvTransferMsg(src : node,dst : node,k : key,v
value, s : seqnum)
require transfer_msg(src,dst, k, v, s) A ~segnum_recvd(s)
seqnum_recvd(s) < true
table(dst, k,v) < true

Feldman, Y.M.Y.,, Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5 23

20

Motivating Example: Sharded Key-Value Store

action RecvTransferMsg(src : node,dst : node,k : key,v
value, s : seqnum)
require transfer_msg(src,dst, k, v, s) A ~segnum_recvd(s)
seqnum_recvd(s) < true
table(dst, k,v) < true

action SendAck(src : mode,dst : node,k : key,v : wvalue,s :
seqnum,)

require transfer_msg(src,dst, k,v,s) N\ seqgnum_recvd(s)

ack_msg(s) < true
action DropAckMsg(src : node, dst : node, k : key,v : value, s :
seqnum)

require ack_msg(s)

ack_msg(s) < false
action RecvAckMsg(src : node, dst : node, k : key,v : value, s :
seqnum,)

require ack_msg(s)

unacked(src,dst,k,v, s) < false

Feldman, Y.M.Y.,, Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5 23

Motivating Example: Sharded Key-Value Store

action RecvTransferMsg(src : node,dst : node,k : key,v
value, s : seqnum)
require transfer_msg(src,dst, k, v, s) A ~segnum_recvd(s)
seqnum_recvd(s) < true
table(dst, k,v) < true

action SendAck(src : node,dst : node,k : key,v : value,s :

seqnum,)
require transfer_msg(src,dst, k,v,s) N\ seqgnum_recvd(s)
ack_msg(s) < true

action DropAckMsg(src : node, dst : node, k : key,v : value, s :

seqnum,)
require ack_msg(s)
ack_msg(s) < false

action RecvAckMsg(src : node, dst : node, k : key,v : value, s :

seqnum,)
require ack_msg(s)
unacked(src,dst,k,v, s) < false

safety Vk,ni,n2,v1,v2, k. table(ni, k,v1) A table(nz, k,v2) =
m1 = n2 A\ vy = v

Feldman, Y.M.Y.,, Wilcox, J.R., Shoham, S., Sagiv, M. (2019). Inferring Inductive Invariants from Phase Structures. In: Dillig, I., Tasiran, S. (eds) Computer Aided
Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5 23

20

l[dentifying Key State Components and Actions

* Instantiate a violation in an arbitrary instance
table(A,, K, V;) A table(B, K, V,) =) S.. = { table((A./B), K, (V;/V,)) }

e How would such a state manifest? What actions set these relation
entries?

action RecvTransferMsg(src : node,dst : node,k : key,v :
value, s : seqnum)
require transfer_msg(src,dst, k,v,s) A -seqgnum_recvd(s)
seqnum_recvd(s) < true
[table(dst, k,v) « t'rue]

action Put(n : node, k : key, v : value)
require Jv’. table(n, k,v’)
table(n, k,*) «+ false
[table(n, k,v) < true]

e Collect relevant actions

A = { RecvTransferMsg(*, (A./B.), K, (Vi/V,), *), Put({A/By), K, (Vi/Vy)) }

l[dentifying Key State Components and Actions

* What state components are required for these actions to fire >
examine guards of actions

action RecvTransferMsg(src : node,dst : node,k : key,v :
value, s : seqnum)
require [tmnsfer_msg(src, dst, k,v,s) N\ ~seqgnum_recvd (s)]
seqgnum_recvd(s) < true
table(dst, k,v) < true

action Put(n : node, k : key, v : value)
require (Jv’. table(n, k, v'))
table(n, k,*) < false
table(n, k,v) < true

* Add these entries to the set of relevant state components

S = { table((AL/BL), K, (Vl/V2>):
transfer_msg(*, (A./B.), K, (Vi/V,), *),
table((A /B.), K, *) }

* lterate until convergence!

l[dentifying Key Components and Actions

Algorithm 4 STATICANALYSIS

Arguments: P the program, S;,;; a set of clauses
Returns: S a set of clauses, A a set of action invocations

1: procedure STATICANALYSIS(P, S;nit)

S = { table(*, K, *),
transfer_msg(*, *, K, *, *),

2: S — Sinit

3 Sprev < (0 ~segnum_recvd(*),

4 A« ~seqnum_sent(*),

5. while S # 5y, do unacked(*, *, K, *, *) }

6 S e 8\ 50 m—)

T Pt s A= { Put(x, K, %),

8: for each clause c in S; do > For each new clause RecvTransferMsg(*, *, K, *, *),
o: Ay < ACTIONSTHATSET(P, ¢) Reshard(*, *, K, *, *)

10: for each action invocation act in A; do ? *’) >0 .) .

11: S <+ S U GUARDSFOR(P, act) Retransmit(*, *, K, *, *) }
12: A+—AUA,

13: return S, A

23

Observations

 Original protocol = 8 actions, static analysis = 4 actions — Most
actions are not relevant to simulate a violation!

* How does protocol avoid violation = complex!!
* How to simulate hypothetical violation = avoid complexity

* Need only ensure that these components are preserved in cutoff
system to simulate violation

Cutoff Instance

How many nodes do we need?

* Instantiate violation of safety property = table(A,, K, V;) A
table(B,, K, V,)

* Violations require 2 instantiated nodes = use cutoff instance of size 2

Synthesizing the components of the
simulation

Consider the arbitrary sized instance L and cutoff instance C
* Lock-step — Which action(s) taken in C for every action in L?

e Simulation relation — Inductive property satisfied by twin systems
when they progress as per lock-step. Must preserve violations!

Derive above from static analysis
* Every action in set A is simulated by a corresponding action in C

e Simulation relation ensures every component in set S is present in C

The last piece: sim mapping

How to map state components and
actions from Lto C?

 Map nodes from L to C!
e sim: nodesinL = nodesinC

Simple mapping strategies work in
practice!

Assume nodes in C are A. and B
* Map A, to A.and B, to B,

* Rest of the nodes in L all map to one of
Ac or B,

27

Putting it all together

Lock-step
(1) Put,(n, K,v) is simulated as Putc(sim(n), K, v)
(2) Reshard| (ny,nq, K,v, s) is simulated as
Reshardc(sim(ny), sim(ns), K, v, s)
(3) Retransmit (n1,ns, K, v, s) is simulated as
Retransmitc (sim(nq), sim(n2), K, v, s)
(4) RecvTransferMsg) (n1,nq, K, v, s) is simulated as
RecvTransferMsgc(sim(n1), sim(n2), K, v, s)

Simulation relation
(1) tabler, (n, K,v) = tablec(sim(n), K, v)
(2) unackedr,(ny1,no, K,v,8) =
unackedc(sim(ny), sim(ng), K, v, s)
(3) —seqnum_sent(s) = —seqnum_sent(s)
(4) —seqnum_recvd (s) = —seqnum_recvd (s)
(5) transfer_msg; (ni,ng, K,v,8) =

transfer_msg(sim(ny), sim(ng), K, v, s)

28

SMT Encoding

We encode the correctness of the simulation in SMT. Three properties
need to hold

* @, — initial states of L and C satisfy simulation relation

* Pgep — Simulation relation holds inductively as L and C move as-per
lock-step

* Psatety — Simulation relation ensures that if L is in a violating state, so is
C

Evaluation and Results

e Using Z3 as backend SMT

SOIVe r, we d pply th |S Protocol Cutoff Time Taken(s) ||
apprOaCh on a va rlety Of Sharded Keyl—Vallue Stolre[15] 2 0.02 5
. . Leader Election in a Ring[16] 2 0.03 4
distributed protocols Centralized Lock Server(17] 2 0.02 5
. . Lock Server Sync[18] 2 0.01 2
* Approach is generalizable Ricart Agrawala[19] 2 0.01 6
Two Phase Commit[20] 2 0.02 9
dCross Classes Of Toy Consensus ForAll[18] 1 0.07 5
p rOtO cO IS Consensus[18] 2 29.7 11
. TABLE 1II: v is a FOL formula of the type /\ll' (p =
* For more dEtalls, refer to q) therefore |7y| represents the number of clauses 0]1‘" the type
our paper p = q in the simulation relation. Time taken refers to the

total time taken by our synthesis+verification procedure.

Limitations

Current approach can fail in one of two ways
* Cutoff value could be higher than the one chosen in our analysis

* Simulation relation and lock-step do not work i.e. one of @, , Pgep OF
P safety d0 Not hold

Our work takes the first step in formalizing and generalizing the 'small
scope’ hypothesis for distributed protocols

Conclusions

* We automate and mechanize cutoff-based proofs for distributed
protocols

* Cutoff-based approaches allow us to avoid reasoning about protocol
Intricacies

* Focus on simulating hypothetical violations in a small instance

* Results show that cutoff-approaches are generalizable across classes
of protocols

* We hope that this work paves the way for more investigations into
automating cutoff proofs for more complex protocols

	Slide 1: Automating Cutoff-based Verification of Distributed Protocols
	Slide 2: Distributed Protocols
	Slide 3: Distributed Protocols
	Slide 4: Distributed Protocols
	Slide 5: Distributed Protocols
	Slide 6: Distributed Protocols
	Slide 7: Specifying Correctness
	Slide 8: Specifying Correctness
	Slide 9: Challenges with Verification
	Slide 10: Example Protocol: Sharded Key-Value Store
	Slide 11: Example Protocol: Sharded Key-Value Store
	Slide 12: Example Protocol: Sharded Key-Value Store
	Slide 13: Example Protocol: Sharded Key-Value Store
	Slide 14: Example Protocol: Sharded Key-Value Store
	Slide 15: Example Protocol: Sharded Key-Value Store
	Slide 16: Example Protocol: Sharded Key-Value Store
	Slide 17: Example Protocol: Sharded Key-Value Store
	Slide 18: Example Protocol: Sharded Key-Value Store
	Slide 19: Example Protocol: Sharded Key-Value Store
	Slide 20: Example Protocol: Sharded Key-Value Store
	Slide 21: Example Protocol: Sharded Key-Value Store
	Slide 22: Example Protocol: Sharded Key-Value Store
	Slide 23: Example Protocol: Sharded Key-Value Store
	Slide 24: Example Protocol: Sharded Key-Value Store
	Slide 25: Example Protocol: Sharded Key-Value Store
	Slide 26: Verifying Distributed Protocols: Inductive Invariants
	Slide 27: Verifying Distributed Protocols: Inductive Invariants
	Slide 28: Cutoff-based Approach
	Slide 29: Cutoff-based Approach: Advantages
	Slide 30: Our Contributions
	Slide 31: Simulation-based approach
	Slide 32: Motivating Example: Sharded Key-Value Store
	Slide 33: Motivating Example: Sharded Key-Value Store
	Slide 34: Motivating Example: Sharded Key-Value Store
	Slide 35: Motivating Example: Sharded Key-Value Store
	Slide 36: Motivating Example: Sharded Key-Value Store
	Slide 37: Motivating Example: Sharded Key-Value Store
	Slide 38: Motivating Example: Sharded Key-Value Store
	Slide 39: Identifying Key State Components and Actions
	Slide 40: Identifying Key State Components and Actions
	Slide 41: Identifying Key Components and Actions
	Slide 42: Observations
	Slide 43: Cutoff Instance
	Slide 44: Synthesizing the components of the simulation
	Slide 45: The last piece: sim mapping
	Slide 46: Putting it all together
	Slide 47: SMT Encoding
	Slide 48: Evaluation and Results
	Slide 49: Limitations
	Slide 50: Conclusions

