
This paper is included in the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-47-2

Open access to the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation is sponsored by

Low End-to-End Latency
atop a Speculative Shared Log with Fix-Ante Ordering

Shreesha G. Bhat, Tony Hong, Xuhao Luo, Jiyu Hu, Aishwarya Ganesan,
and Ramnatthan Alagappan, University of Illinois Urbana-Champaign

https://www.usenix.org/conference/osdi25/presentation/bhat

Low End-to-End Latency atop a Speculative Shared Log with Fix-Ante Ordering

Shreesha G. Bhat, Tony Hong, Xuhao Luo, Jiyu Hu, Aishwarya Ganesan, Ramnatthan Alagappan

University of Illinois Urbana-Champaign

Abstract. Today’s shared logs incur expensive coordination to
globally order records across storage shards before they can
deliver records to applications. This makes them unsuitable
for many modern applications that must process ingested data
as early as possible and realize low end-to-end (e2e) laten-
cies. We propose SpecLog, a new shared log abstraction that
delivers records by speculating the global order, allowing the
application’s computation and shared-log coordination to be
overlapped, thus reducing e2e latency. To enable accurate
speculations, we introduce fix-ante ordering, a novel ordering
mechanism that predetermines the global order and makes the
shards adhere to the predetermined order. With fix-ante order-
ing, shards, except in rare cases, can accurately predict where
their records will sit in the total order before global coordi-
nation. We build Belfast, an implementation of the SpecLog
abstraction and fix-ante ordering. Our experiments show that
Belfast offers lower e2e latencies than current shared logs
while preserving their elasticity, flexibility, and scalability.

1 Introduction
Shared logs play a central role in many modern, data-
driven applications like high-speed trading [27, 28], real-time
search [54,60], IoT analytics [24,49], fraud detection [15,46],
and others [3, 59]. At a high level, in all these applications, a
set of upstream components ingest data into the shared log,
and a set of downstream tasks consume and process the data.

Shared logs ease the construction of the above applications
by providing an abstraction of a durable and ordered sequence
of records. Many shared logs [1, 4, 16, 29, 36, 61] provide this
abstraction while storing records on multiple storage shards,
i.e., they offer a total order of records across shards.

Early total-order logs like Corfu [16, 17] first obtain a posi-
tion from a sequencer and then use a fixed position-to-shard
mapping to write to the shard responsible for that position.
This architecture fundamentally leads to three problems for
applications [29, §2.2]: inability to seamlessly add or remove
shards (to elastically adapt to demands), inflexible data place-
ment, and limited scalability. Fortunately, a family of shared
logs [29,32,36], starting from Scalog [29], address these prob-
lems by taking a durability-first approach. Here, clients first

make records durable on the shards of their choice; the shards
then periodically contact a sequencing layer to establish total
order for a batch of records. This design enables one to add
or remove shards without downtime, allows clients to choose
the location of records, and enhances scalability [29].

Unfortunately, the design choices that enable these desir-
able properties in today’s shared logs fundamentally lead to
high delivery latency (§2). Delivery latency refers to the time
between when upstream components produce records and the
earliest point when the shared log can deliver these records
to downstream tasks. The key reason for high delivery la-
tency is the overhead to determine the global order and doing
so in a batched manner. Specifically, the shards periodically
batch and report the number of records made durable so far to
the sequencing layer; the sequencing layer then determines a
“global cut”, which dictates how to assign positions to durable
records across shards. Only after the shards coordinate with
the sequencing layer and receive the global cut, can they as-
sign positions to their records and serve them to downstream
tasks, increasing delivery latency.

Such high delivery latency, in turn, leads to high application
end-to-end (e2e) latency, which refers to the time between
when records are produced and when the downstream task
completes processing them. This is because only after the
shared log orders and delivers records, can the application’s
downstream computations start, increasing e2e latency. Real-
izing low e2e latency, however, is critical for many real-world
applications. Consider the following: a financial application
that must flag fraudulent activity as soon as transactions are
ingested [25, 62]; real-time analytics that must derive insights
from new data as early as possible [6, 56]; high-speed trading
that must trade quickly based on market feed [28, 34]. All
these applications desire low e2e latency in addition to elas-
ticity, flexible placement, and scalability from the shared log.
Although today’s shared logs like Scalog satisfy the latter
needs, they cannot help realize low e2e latency.
SpecLog Abstraction and Fix-Ante Ordering. To enable
applications atop shared logs realize low e2e latency, we iden-
tify an opportunity for speculative execution. Given that high
delivery latency stems from global ordering, we observe that
if a shared log can speculate the global order and deliver

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 465

records quickly, downstream computation can start based on
the speculated order. Thus, the shared log’s coordination and
the downstream application’s computation can be overlapped,
reducing e2e latency. This approach suits real-world appli-
cations because they typically perform computation over the
consumed records (e.g., computing aggregates [26], updating
indexes [14, 19], performing analysis [31]).

Based on this observation, we propose SpecLog, a new
shared-log abstraction (§3.1). SpecLog offers the same inter-
face as current shared logs but with one difference. SpecLog
first delivers records in a predicted order, and later confirms
whether or not the prediction is correct. If correct, SpecLog
enables low e2e latency; otherwise, SpecLog notifies appli-
cations to recompute based on the actual order, preserving
correctness. While SpecLog’s idea can benefit any shared-log
design, our focus is on durability-first architectures that offer
elasticity, flexibility, and scalability which are critical to appli-
cations in addition to low e2e latency. In such a durability-first
SpecLog system, shards operate the same way as today’s logs,
periodically coordinating with the sequencing layer to deter-
mine the actual order. However, they predict the global order
and deliver records earlier before coordination. Later, when
the actual order arrives, shards confirm or fail the speculation.

Using speculation to reduce latency is not new; many prior
distributed systems have done so [23, 33, 38, 39, 48, 65]. How-
ever, SpecLog is the first to offer a speculative interface for
today’s shared logs, helping applications realize low e2e la-
tency while preserving the other properties of today’s shared
logs. Further, a key innovation in SpecLog is how it virtually
eliminates misspeculations except in very rare cases via a
novel ordering mechanism called fix-ante ordering.

To realize low e2e latency, SpecLog must be able to cor-
rectly predict record positions at the shards before global
coordination. Such correct prediction in current logs like Sca-
log, however, is inherently difficult. This is because shards
have the free will to make durable and report however many
records they wish in each report to the sequencing layer. Be-
cause the positions assigned to records at a shard depend upon
how many records other shards report, it is hard for the shard
to predict where its local records will sit in the total order.

Fix-ante† ordering solves this problem (§3.2). The key idea
behind fix-ante ordering is to predetermine beforehand the
global order and try to enforce the shards to adhere to this
order. Fix-ante order is specified as a series of predetermined
global cuts. The shards adhere to each predetermined cut by
making durable and reporting exactly the number of records
as dictated by that cut (which we refer to as the shards’ quo-
tas). Because each shard knows that other shards will report
precisely the number of records dictated by their quotas, each
shard can accurately predict the positions of its local records
in the total order without waiting for the actual global order
(which is determined after coordinating with the sequencer).

†Fix-ante is derived from a Latin phrase “Praefixum ante” which roughly
means to fix or predetermine beforehand (as opposed to having free-will).

Note that fix-ante ordering does not mean order is established
before durability; rather, fix-ante ordering simply offers a way
for predicting the global order in durability-first architectures.

As long as the shards adhere to their quotas, the actual
global order will match the fix-ante one, ensuring that the
positions speculated by the shards remain correct. Fortunately,
SpecLog can ensure that shards can adhere to their quotas
except in rare cases. Specifically, in failure-free cases, shards
can adhere to their quotas even when they have fewer or
more records than their quotas by filling in no-op records
or by delaying records to subsequent reports, respectively.
Even when a few shard replicas fail, quotas can be adhered
to because shards are internally fault tolerant. Only in the
rare case where an entire shard fails or if no shard replica
can contact the sequencing layer, will the shard be unable to
adhere to its quota, resulting in incorrect predictions. While
SpecLog loses some performance under such rare cases, it
still preserves correctness by failing the speculation.
Belfast System. We build Belfast, an implementation of the
SpecLog abstraction and fix-ante ordering (§4). While fix-
ante ordering provides a basic framework for accurate predic-
tions, a real system must solve several performance challenges
while still preventing misspeculations. First, Belfast must as-
sign quota for a shard such that it is neither too high (which
will add many no-ops) nor too low (which will delay records);
Belfast achieves this by setting quotas based on ingestion
rates. Second, even with the right quotas, Belfast must handle
cases where shards experience bursts. Belfast handles bursts
via a new lag-fix mechanism; without this, appends and confir-
mations will incur higher latencies. Third, Belfast must handle
longer-term rate changes. Belfast does this by dynamically ad-
justing predetermined cuts and quotas. Importantly, it does so
without misspeculations via a novel speculation lease window
technique that ensures that all shards use the same predeter-
mined cuts for predictions and that they uniformly move to
the new cuts at the window boundaries. Belfast also adds or
removes shards without downtime and misspeculations using
the speculation lease windows. Finally, Belfast can dynam-
ically exclude shards from some cuts to mitigate straggler
shards and to maintain low latencies with many shards.
Results. Our experiments (§6) show that Belfast delivers
records ∼3× earlier than Scalog, thereby reducing e2e latency
by 1.6× over Scalog. Belfast offers significant benefits in e2e
latency even with varying amounts of downstream computa-
tion. Belfast achieves low e2e latency while incurring minimal
overhead in append latency over Scalog (5.8% with 10 shards).
We also show that Belfast can effectively handle bursts, adjust
to rate changes, mitigate straggler shards, and handle shard
failures, all while maintaining low e2e latency. We show that,
like Scalog, Belfast can add and remove shards without any
downtime and scale throughput with shards while reducing
e2e latencies. Finally, we build three applications (§5): intru-
sion detection, fraud monitoring, and high-frequency trading,
and show that Belfast enables these applications to realize

466 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1.4×-1.6× lower e2e latency than Scalog.
Contributions. This paper makes four contributions.
• We propose SpecLog, a shared-log abstraction that deliv-

ers records by predicting their order, overlapping global
coordination and computation, thus reducing e2e latency.

• We introduce fix-ante ordering, a novel ordering approach
that enables shards to accurately speculate global positions.

• We build Belfast, an implementation of SpecLog and fix-
ante ordering. Belfast is the first shared log to offer elasticity,
flexible placement, and scalability with low e2e latencies.

• We experimentally demonstrate Belfast’s benefits.

2 Motivation
We explain why today’s shared logs incur high delivery laten-
cies, making them unsuitable for realizing low e2e latency.

2.1 State-of-the-Art Shared Logs: Background
Shared logs [16–18, 29] offer a powerful abstraction: a fault-
tolerant, ordered record sequence that many clients can si-
multaneously append to and read from. Upon appends, the
shared log makes records durable and linearizably [35] or-
ders them: if an append A completes before another append
B starts, then A will precede B in the log. Clients can read
records at positions or subscribe to receive records in order.

With this abstraction and simple interface, shared logs ease
building modern applications like real-time analytics [52, 54,
59, 60], high-frequency trading [27, 28], and many others [15,
31, 37, 46, 49, 51]. In all these applications, a set of upstream
components ingest data into the shared log which provides
strong durability and ordering guarantees. Downstream tasks
then consume the records and compute over them.

Popular shared logs like Kafka [13] and others [5, 50] do
not provide a total order across shards. Corfu [16, 17], an
early shared log, offers total order. Corfu adopts an order-
first approach, where clients first obtain a position from a
sequencer. Then, using a fixed position-to-shard mapping,
clients write the record to the shard responsible for the ob-
tained position. As others have noted [29, §2.2], the order-first
approach is harmful in three ways. First, it introduces holes
because clients can fail after getting the position but before
writing. Readers must fill such holes, which requires a system-
wide mapping from positions to where records are stored, and
clients and servers must agree upon this mapping. This means
adding or removing shards requires agreeing upon the new
mapping, which leads to system-wide unavailability. Second,
the fixed mapping also means that clients cannot flexibly write
records to shards of their choice. Finally, obtaining a position
for every write makes the sequencer a scalability bottleneck.

State-of-the-art shared logs like Scalog [29] address these
limitations. Scalog takes a durability-first approach, where
clients first store records on a shard of their choice. After
batching many records, the shards contact a sequencing layer
which determines the total order of records across shards. By
avoiding Corfu’s fixed mapping, Scalog can add or remove

application e2e latency

processing

primary

leader

backup

followers

upstream

delivery latency

downstreamap
p

sh
ar

ed
 lo

g shard-i

sequencing
layer

AO

B: batch
C:determine
global cut
AO: assign
order based
on cutC

B
B

append latency (ack upstream)

Figure 1: Delivery and E2E Latency in Today’s Shared Logs.

shards without downtime, enabling it to elastically grow or
shrink throughput and capacity [29, §6.1]; such seamless
elasticity is important for applications to adapt to dynamic
demands [29,41]. Scalog also enables flexible data placement
as clients can choose record locations; this is greatly use-
ful because applications can assign records to shards based
on application-level semantics (e.g., records of a particular
user can go to one shard) or based on proximity. Finally, the
batched communication with the sequencing layer allows Sca-
log to scale better than Corfu [29, §6.3]; such scalability is
important for applications that must ingest and process data
at high rates [29,34]. Given these benefits, many systems like
Boki [36] and FlexLog [32] adopt a Scalog-like design.

2.2 High Delivery Latency in Today’s Shared Logs
Although today’s shared logs offer desirable properties, the
design choices that enable them to achieve these properties is
fundamentally at odds with low delivery latency, which is the
time between when records are produced into the log and the
earliest point they can be delivered to downstream tasks.

Figure 1 shows this problem in Scalog. Clients first send
records to the primary of a shard. The shard primary logs the
records locally and replicates them to the shard backup. A
record is durable once it has been logged by both the shard
primary and backup. The shard servers then report their local
log lengths to a sequencing layer. To amortize the cost of con-
tacting the sequencing layer, the shards batch (B in Figure 1)
and only report log lengths periodically; such periodic reports
incur a batching delay. The sequencing layer then assembles
the local reports from shards and determines the number of
durable records within each shard. It then computes a global
cut: the global order of durable records across shards (C), and
makes the cut fault-tolerant via Paxos [40]. The sequencer
then sends the global cut to all shards, using which each shard
assigns global positions to records in its local log (AO). Only
after this point, in addition to acknowledging the appends, the
shared log can deliver the records to downstream consumers,
which then can start processing. Thus, between upstream
ingestion and downstream consumption, applications incur
batching delays and the cost of global ordering.

High delivery latencies are not merely a result of how to-
day’s shared logs are implemented, but rather a fundamental
cost of the durability-first approach. This is because the de-
sign choice to have clients first write records to shards of their
choice and then have the shards report to the sequencing layer

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 467

Client Callbacks
 deliver(r, pos, is_spec)
 deliver record r at position pos and
 indicate if the position is speculative
 confirm_spec(k)
 confirm positions up to k
 fail_spec(k)
 fail positions after k; a future deliver()
 will provide records in the correct order

SpecLog Interface
append(r, shard)
 append record at a
 target shard; returns log position
subscribe(i, opt pred)
 subscribe to receive from pos i;
 optionally filter based on predicate
trim(i)
 trim log up to position i

Figure 2: SpecLog Interface.

in a batched manner (which enables seamless elasticity, flexi-
bility, and scalability) is what leads to high delivery latencies.
Order-first shared logs like Corfu do not incur some of the
above overheads like batching and coordination within the
sequencing layer. However, they also deliver records only
after the global order is established which takes multiple
roundtrips [16, 43], thus still incurring high delivery latencies
(besides suffering from other limitations for applications).

Unfortunately, high delivery latencies negatively impact
application e2e latency. As shown in the figure, e2e latency in-
cludes the delivery latency and the time to process the records.
Thus, to applications, the high delivery latencies of today’s
shared logs is a major obstacle to realizing low e2e latencies.

2.3 Demand for Low E2E Latency
Low e2e latencies are critical for many modern, data-driven
applications. High-speed trading applications must execute
trades in real-time based on incoming data feeds [27, 28,
34, 42], where shaving off even milliseconds of latency can
save millions of dollars [9, 10]. Financial fraud detection
systems need to flag suspicious transactions as quickly as pos-
sible [25, 55, 62], with every millisecond being crucial [2, 12].
Real-time analytics engines [52, 59] require rapid insights
from fresh data, while real-time search systems must mini-
mize the delay before new data appears in results [54, 60].
Similar low e2e latency requirements exist for event sourc-
ing [37, 51], IoT analytics [24, 31, 49], and fleet management
applications [58]. Unfortunately, current shared logs cannot
meet these demanding latency requirements. Further, the im-
portance of low e2e latency and thus the need for low delivery
latency is evident from RedPanda’s recent survey [11], where
100s of practitioners reported the vital metrics in their shared-
log deployments. Among them, ∼35% cited delivery as the
most critical latency metric.

3 SpecLog and Fix-Ante Ordering
We describe the SpecLog abstraction and explain how it uses
fix-ante ordering to enable accurate speculations.

3.1 SpecLog Abstraction
Our goal is to design a shared log that enables low e2e latency.
To this end, we first observe that in many modern, data-driven
applications, downstream tasks typically perform computa-
tion over the consumed records. For example, IoT analyt-
ics performs aggregations, detects outliers, updates database
views, or runs ML algorithms [20, 26, 49]. Real-time search
platforms [54] incrementally update multiple indexes (e.g.,

document, columnar) as new data is ingested [14, 19]. Simi-
larly, high-speed trading computes online aggregations and
runs regression to predict expected profit and loss [42].

Current shared logs incur high delivery latencies and only
after this delay, can downstream computations start, increas-
ing e2e latencies. Given that high delivery latency stems from
global ordering, we observe that if the shared log predicts
global positions and delivers records earlier, downstream com-
putation can start based on the speculated order. This allows
the shared log’s global coordination and downstream compu-
tation to be overlapped. That is, by the time the processing
completes, the shared log could have determined the actual
order after global coordination. If the predicted order matches
the actual one, then applications realize low e2e latency.

Based on this observation, we propose the SpecLog ab-
straction. SpecLog offers a similar interface to today’s shared
logs [29] as shown in Figure 2. Applications can append
records at a shard of their choice, subscribe† to records start-
ing from a position (optionally filtering based on a predicate),
and trim the log. The only difference is that when a record is
delivered for a position, a bit indicates whether or not the posi-
tion is speculative. If speculative, SpecLog will later confirm
or fail the speculation. Applications require little changes to
work with SpecLog’s interface. First, applications must wait
until they receive the confirmation before externalizing out-
puts (e.g., trigger alerts). Next, if downstream tasks perform
state updates, they must roll them back if speculation fails.

SpecLog’s idea can benefit any shared-log architecture,
even order-first ones. However, our focus is on today’s
durability-first logs that offer elasticity, flexibility, and scal-
ability because applications require these properties in addi-
tion to low e2e latency. Figure 3 shows how SpecLog would
reduce e2e latencies in such durability-first shared logs. In
SpecLog, once the records are durable, the shards predict their
order (P) and deliver them to downstream tasks, which begin
processing. Shards continue to process appends the same way
as existing logs: they coordinate with the sequencing layer
in a batched manner (B) to determine the actual order. Once
the actual global cut is determined (C), SpecLog checks if the
predicted order matches the actual one (CO). If the predic-
tion is correct, SpecLog sends a confirmation; otherwise, the
speculation fails and records are supplied in the correct order.
Properties. SpecLog reduces e2e latency compared to today’s
shared logs regardless of compute time. However, the extent
of benefit depends upon how big or small the compute time
is. Intuitively, SpecLog offers the most benefit when global
ordering and computation effectively overlap; in other cases,
SpecLog still offers lower e2e latencies. SpecLog preserves
the seamless elasticity, flexibility, and scalability of today’s
shared logs. First, in SpecLog, clients still flexibly choose
shards to write records. This, in turn, allows SpecLog to add or
remove shards seamlessly without any downtime [29]. Finally,

†SpecLog can also support a read API, but the applications we target
prefer subscribe because it enables them to consume records at the earliest.

468 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

delivery

application e2e latency

processing

primary

leader

backup

followers

upstream downstreamap
p

sh
ar

ed
 lo

g shard-i

sequencing
layer

deliver confirm

append latency (ack upstream)

B

C

COP

P: predict
order
B: batch
C:determine
global cut
CO: check
order

Figure 3: Delivery and E2E Latency in SpecLog.

because appends are batched at the shards which then contact
the sequencing layer periodically, SpecLog would scale well.

3.2 Fix-Ante Ordering
SpecLog can lead to low e2e latencies only when the
shards can correctly predict the position of their records. Un-
fortunately, making such correct predictions is difficult in
durability-first shared-log designs. We observe that the free-
will nature of reports is what makes correct predictions hard.

To understand this, consider Scalog with three shards S1,
S2, and S3. Suppose, initially, S1, S2, and S3 report 2, 3, and
2 durable records to the sequencing layer, respectively. As
a result, the sequencing layer would produce the global cut
⟨2,3,2⟩. Scalog uses a deterministic, lexicographic scheme
to assign order, where records in lower-numbered shards go
before records in higher-numbered shards [29]. Thus, from
the global cut, shards would assign positions to their local
records as S1 : [1,2],S2 : [3,4,5],S3 : [6,7]. One approach
to predict the positions for subsequent records is to use the
information from the previous cut (that S1, S2, and S3 sent
2, 3, and 2 records, respectively). If such a scheme is used,
S2 would predict that its next local record would get position
10 (because it anticipates that S1 would report 2 records and
thus positions 8 and 9 would go to S1). However, in the next
report, S1 could report 3 records (because it has the free-will
to do so); thus, S2’s next local record will actually be assigned
position 11 (not 10), making S2’s prediction incorrect.
Fix-ante Ordering Insight. Fix-ante ordering, in contrast,
enables shards to accurately predict the positions of their
records. The main idea behind fix-ante ordering is to predeter-
mine in advance the global order and make the shards adhere
to this order. Fix-ante order is a sequence of predetermined
global cuts that the system is expected to produce. Each cut
dictates how many records shards must include in their re-
ports, which we refer to as the shards’ quotas. Shards then
adhere by exactly meeting their quotas in each report. The
key insight is that, because each shard knows that the other
shards will report precisely the number of records dictated by
their quotas, each shard can accurately predict the positions
of its records in the total order before global coordination. We
make this idea more concrete below.
Predetermined Cuts, Quotas, and Predictions. The fix-ante
order is specified as a sequence of predetermined global cuts
P1,P2,P3,P4... that the shards know beforehand. The ith pre-

determined cut is given by Pi : ⟨di1,di2,di3...din⟩, where di j is
the expected number of durable records at shard j as of the
ith cut and n is the number of shards. The quota for a shard j
to satisfy the ith predetermined cut, qi j, is the exact amount
of new records that shard j must make durable and include in
its ith report. That is, qi j = di j −d(i−1) j.

Given this, the shards predict positions of their local records
in the total order as follows. Intuitively, the positions for the
jth shard for the ith cut will start after all the positions covered
by the (i − 1)th cut and the quotas for all the shards that
precede j in the ith cut†. Precisely, the predicted positions
for the jth shard for the ith cut will be [S+ 1, ...,E], where
S = ∑

n
k=1 d(i−1)k +∑k< j qik and E = S+qi j.

As an example, consider the predetermined cuts for three
shards S1, S2, and S3 to be ⟨1,2,2⟩, ⟨2,4,4⟩, ⟨3,6,6⟩ and so
on. In this simple example, the quotas remain constant for all
cuts with S1, S2, and S3 having a quota of 1, 2, and 2, respec-
tively. Given this, S1, S2, and S3 would predict their record
positions for the first cut to be [1], [2,3], and [4,5], respec-
tively. For the second cut, they would predict the positions of
their subsequent records as [6], [7,8], and [9,10], and so on.

Although SpecLog shards predict the positions based on
fix-ante order, it does not mean that order comes before dura-
bility in fix-ante ordering. The system still determines the
actual order by coordinating with the sequencing layer after
durability. Determining the actual order is required because,
in rare cases (as we describe below), shards may not be able
to meet their quotas. To know the actual order, like in other
durability-first logs, SpecLog shards periodically report to
the sequencing layer the number of records they have made
durable. The sequencing layer then sends the actual cut. As
long as the shards adhere to their quotas, the actual cuts sent
by the sequencing layer will match the predetermined cuts.
Adhering to Quotas and Fix-ante Order. Can shards always
adhere to quotas? Fortunately, shards in SpecLog can adhere
to their quotas except in rare cases. During normal operation,
three cases are possible when a shard tries to meet its quota.
First, the shard could have received from clients and made
durable precisely the number of records as its quota; in this
case, the shard naturally meets the quota and so simply reports
all records. Second, a shard could have received and made
durable fewer records than its quota. In this case, it adds no-
op records to satisfy the quota; no-op records are ignored
by downstream consumers. Third, a shard could have made
durable more records than its quota. In this case, the shard
delays the additional records to the next report.

Even when a few shard replicas fail, the shard can keep-
ing meeting its quota; this is because shards are fault toler-
ant [16, 29, 43] as they internally use primary-backup replica-
tion [21] or Paxos [40]. Only in the very rare case where an
entire shard fails or if no replica within the shard can contact
the sequencing layer, the shard will not be able to adhere to

†This is because, SpecLog uses the same lexicographic procedure as
Scalog to assign positions across shards from cuts.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 469

S1 S2 S3

cut1: <2,3,2>

cut2: <4,6,4>
cut3: <6,9,6>

no-op
delayed

Predetermined cuts

receives 3
records, so delays 1

1 delayed record
+ 1 received

1 recvd + 1 no-op added

quota:2 quota:3 quota:2

Figure 4: Adhering to the Fix-ante Ordering.

its quota and thus the actual cut will be different from the
predetermined cut, making the predictions incorrect. While
SpecLog loses some performance under such cases, it still
preserves correctness by failing the speculation.

Figure 4 shows how shards can meet their quotas, which en-
ables correct speculations. In this example, the predetermined
cuts are ⟨2,3,2⟩, ⟨4,6,4⟩, ⟨6,9,6⟩ and so on, and the shards
S1, S2, and S3 have a constant quota of 2, 3, and 2, respectively.
As shown in the figure, initially, S1, S2, and S3 have received
and made durable 2, 3, and 2 records, respectively, allowing
them to meet the quota by simply reporting all records. Next,
S1, S2, and S3 have received 3, 2, and 1 records, respectively.
To meet its quota, S1 delays one record to the next report (the
orange record); similarly, S3 adheres to its quota by adding
one no-op record (the gray record). S2 can thus accurately
predict that its next local record will be assigned a global
position of 10 because it knows that positions 8 and 9 would
go to S1 based on the predetermined cuts. This is in contrast
to the free-will nature of reports in today’s shared log, which
makes correct predictions hard (as we described earlier).

While each shard adheres to its quota, the sequencing layer
waits to receive reports from all the shards to ensure that the
entire system followed the fix-ante order. Only when it knows
that they have collectively adhered to the predetermined cut
Pi; can the sequencer send the corresponding actual cut Ai.
In the above example, suppose in the second report, the se-
quencer only received reports from S1 and S3 and has not
heard from S2. Then, it cannot send the second actual cut. If
it sends the actual cut now, it would be ⟨4,3,4⟩ instead of
the predetermined cut ⟨4,6,4⟩, which would make the pre-
dictions wrong. Thus, to match the predetermined cut, the
sequencer waits until it knows that the shards have adhered to
their quotas. Note that if any shards have a quota of 0 for a
predetermined cut, then the sequencing layer does not wait
for those shards. If the sequencer finds that it did not receive a
report from a shard for a long duration (e.g., due to a failure),
the sequencing layer will determine the actual cut based on
the received reports; in such a case, the actual cut will be
different from the predetermined one, which will be handled
as a misspeculation.
Append Linearizability. With fix-ante order, although the
cuts are predetermined, appends still cannot be acknowledged
without coordinating with the sequencing layer; acknowledg-
ing appends before that will violate linearizability. Consider
a scenario with two shards S1 and S2, and the first predeter-
mined cut ⟨1,1⟩. Suppose an append B happens at shard S2

downstream clients

sequencing layer
(Paxos)

 shard-1 shard-3

upstream clients

re
po

rt
2 report 2

re
po

rt
3

<2
,3

,2
>

actual cut:
 <2,3,2>

append

1

34

<2
,3,

2>

5a ack

 confirm5b
2 deliver

primary

backup

predetermined cuts:
<2,3,2><4,6,4><6,9,6>...

delayed no-op

 shard-2

Figure 5: Belfast Overview, Append and Delivery Path.

(which will be assigned position 2 according to the predeter-
mined cut). Assume that the system incorrectly acknowledges
the append right away. Now, it is possible for another append
A to start after this and be written to S1, which will be assigned
global position 1 (again according to the cut). Such ordering
violates linearizability because A follows B in real time but
is assigned a position before B in the total order. Thus, even
with predetermined cuts, SpecLog waits for the actual cuts
from the sequencing layer before acknowledging appends. In
the above example, append B will be acknowledged only after
receiving the actual global cut from the sequencing layer; the
same cut will also cover append A, essentially making A and
B concurrent, thus preserving linearizability.
Implication of Waiting to Satisfy Fix-ante Order. In Scalog,
shards send however many records they have made durable
at a fixed periodic interval. Also, Scalog’s sequencing layer
determines and sends the global cut at periodic intervals by
including whichever shards have reported in that interval. Fix-
ante ordering changes this behavior to keep the predictions
correct. First, shards only report after they meet their quotas.
Also, the sequencing layer sends the actual global cut after it
waits for the shards to adhere to the corresponding predeter-
mined cut. Thus, when shards do not report in a timely manner
(e.g., because shards do not have enough records or are simply
slow), it delays the actual global cut from the sequencing layer.
Thus, fix-ante ordering in its original form (described thus
far) will incur overhead in append latencies and the time to
confirm the speculations. We next describe how with careful
techniques, a system that uses fix-ante ordering, can alleviate
this issue.

4 Belfast Design and Implementation
Belfast is an implementation of the SpecLog abstraction and
fix-ante ordering. Although fix-ante ordering provides a basic
framework for predictions, Belfast must ensure high perfor-
mance under realistic settings, while enabling accurate pre-
dictions. We first describe Belfast’s basic operation (§4.1),
then how it addresses performance challenges (§4.2-§4.7),
and finally how it handles failures (§4.8).

4.1 Basic Operation
Architecture. Figure 5 shows Belfast’s architecture. Like
Scalog, Belfast has a set of shards, a sequencing layer, and

470 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

clients. Each Belfast shard runs standard primary-backup
replication [21] and is therefore fault-tolerant. The sequenc-
ing layer is a Paxos [40] group that determines actual global
cuts and makes them fault-tolerant. Upstream clients can ap-
pend records to shards of their choice and downstream clients
subscribe to receive records from the shards.
Append Path. Figure 5 shows Belfast’s append and record
delivery path. The append path is similar to that of Scalog but
has two differences. Like Scalog, clients first write records to
shards, which then make the records durable (step-1). In Sca-
log, the shards contact the sequencer every ordering interval
(Tord), which enables them to batch and report many records.
Belfast also does the same (step-3). The first difference is that
Belfast shards adhere to quotas dictated by the predetermined
cuts when reporting to the sequencer; the shards adhere by
either reporting all new records, filling in no-ops, or delay-
ing records. The second difference is how Belfast determines
the actual global cut. In Scalog, the sequencer determines
the global cut once roughly every Tord , including the records
of whichever shards have reported in that interval. In con-
trast, Belfast’s sequencing layer sends the ith actual global cut
only when it knows that the shards have adhered up to the ith

predetermined cut (step-4). Finally, the upstream clients are
acknowledged (step-5a).
Delivery Path. In Scalog, shards deliver records only after
receiving the global cut (i.e., after step-4). In contrast, in
Belfast, shards deliver records once they are durable by pre-
dicting their positions using the predetermined cuts without
waiting to contact the sequencer (step-2). Once a shard re-
ceives the actual global cut (after steps 3 and 4), it checks if
the actual cut matches the predetermined cut. If so, it sends
a confirmation (step 5b); otherwise, it fails the speculation
for the delivered records, after which the downstream clients
would rollback and recompute based on the correct order.

4.2 Rate-based Quotas
A key factor that affects Belfast’s performance is the shards’
quotas. A shard’s quota must be “right-sized”. If too high,
many no-ops will be added leading to extra work; if too low,
many records will be delayed to subsequent reports, increas-
ing the append and confirmation latencies for delayed records.

Belfast addresses this problem by predetermining cuts in
such a way that the quotas match the shards’ ingestion rates.
With such rate-based quotas, each shard can naturally meet
its quota in every report. That is, a shard will receive from
clients and make durable roughly the same number of records
as its quota every Tord . However, even with a stable ingestion
rate, there could be variations and thus the shard could have
received and made durable more or fewer records than its
quota. Belfast handles this by delaying records to subsequent
reports or filling no-ops.

Rate-based quotas work well when rates are roughly stable
and if shards are never added or removed. However, in reality,
shards could experience bursts or drops in rates. The rates

could also increase or decrease more permanently. Shards
could be added or removed to meet dynamic application de-
mands. Finally, a shard could be straggling, affecting the ap-
pend and confirmation latencies for other shards. In the rest of
this section, we describe how Belfast handles these problems,
and importantly, how it does so without any misspeculation,
preserving the e2e latency benefits of fix-ante ordering.

4.3 Handling Bursts and Drops via Lag Fix
When a shard experiences a burst, if the additional records
in the burst are delayed to the subsequent ordering intervals,
then it may take several intervals to drain the burst. This
will increase the append and confirmation latencies for those
records. Thus, instead of delaying additional records to subse-
quent intervals, Belfast shards report to the sequencing layer
immediately once its quota is met. With this, in the normal
case, when the rate is stable, a shard would report roughly
once per Tord . However, during a burst, the shard will send
many reports in one ordering interval, draining the burst.

Such high-frequency reports alone, however, do not ensure
that the requests in the burst can be acknowledged. This is
because other shards would still be reporting once every Tord ,
satisfying one predetermined cut every Tord . Thus, the se-
quencing layer cannot send the actual cuts for the additional
reports sent by the bursty shard. For example, if a bursty shard
(say S1) sends five reports while another shard (S2) has sent
one report, the sequencer can only send the first actual cut
and cannot yet send the actual cuts for S1’s last four reports,
delaying appends and confirmations of records in the burst.

To reduce the append and confirmation latencies, Belfast
uses a lag-fix technique. Belfast first detects the burst at the
sequencing layer by observing the high frequency of reports
from a shard. It then realizes that the other shards are “lagging”
and thus asks them to send more reports. The lagging shards
then do so with client requests that they have and additionally
filling no-ops as needed. This enables Belfast’s sequencer to
send the subsequent actual cuts. In the above example, once
the sequencing layer informs S2 about the lag and S2 sends
four additional reports, the next four actual cuts can be sent.

The lag-fix mechanism also helps Belfast handle sudden
drops in ingestion rates. When a shard experiences a drop,
it cannot meet its quota naturally. Although the shard will
fill no-ops to meet the quota, doing so takes time because
Belfast is conservative about filling no-ops (to minimize its
overhead); this can result in delayed reports. Meanwhile, the
other shards could have progressed more, causing this shard
to lag behind. But fortunately, the lag-fix mechanism would
instruct the shard to fill in no-ops immediately to satisfy many
subsequent cuts and report them in one go; this helps the
lagging shard quickly catch up with the rest of the system.

4.4 Speculation Lease Windows
The ingestion rate at a shard might change more permanently
(for example, as clients join or leave). The mechanisms de-

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 471

scribed so far help Belfast handle slight variations and bursts.
However, relying on them for long-term change will lead
to performance overhead. In particular, if a long-term rate
increase is handled by just high-frequency reports and lag
fix, then it will introduce too many no-ops from the lagging
shards; the sustained high frequency of reports will also in-
crease the load on the sequencing layer. Similarly, a long-term
rate decrease cannot just be handled by filling no-ops.

Thus, the system must periodically adjust predetermined
cuts and quotas. Belfast’s sequencing layer acts as a conve-
nient place to do this because it can estimate the rates based
on the frequency of reports. Further, since the shards periodi-
cally contact the sequencing layer, it can conveniently inform
the shards of any changes in the cuts and quotas.

The key challenge is to change cuts without misspecula-
tions. In particular, we must avoid cases where some shards
use the old predetermined cuts, while others use the new cuts;
if not misspeculations can arise. Suppose the current quotas
for three shards S1, S2, and S3 are 2, 3, and 2, respectively.
Suppose the rate at S1 increases, requiring a quota of 4. As-
sume the sequencer sets S1’s quota to 4 immediately after
determining the first actual cut and sends the updated quota
to the shards. However, based on the previous predetermined
cuts, shard S2 might have already delivered records for posi-
tions 10, 11, and 12 speculatively. But, with the new quota, S1
would assign positions 8, 9, 10, and 11 to its records, which
would lead to misspeculations in the predicted positions for
S2’s records.

To avoid this problem, Belfast predetermines cuts and quo-
tas for a window. All shards use the same predetermined cuts
to make predictions within the window. Conceptually, the
window is a lease on how long the shards can and must use
the current predetermined cuts to make predictions. Belfast
allows changes to predetermined cuts and quotas only at win-
dow boundaries. Thus, all shards uniformly use the new cuts
and quotas after the current window ends.

Belfast realizes the speculation lease windows as follows.
First, instead of time-based lease windows, Belfast measures
windows in terms of number of predetermined cuts. That
is, W cuts form a lease window. Shards can only speculate
positions covered by W cuts. When the previous window
nears completion, the sequencing layer informs shards of the
predetermined cuts and quotas for the next window. In the
previous example, S1, S2, and S3, would move to the new cuts
only when the current window ends. Thus, S1 will not use
the new quota of 4 in the current window and will do so only
from the next window, preventing the above misspeculation.

Belfast determines the need for a quota change and the
new quota as follows. When the ingestion rate increases (or
decreases), a shard will report more (or less) frequently to
the sequencing layer. The sequencing layer uses this change
in frequency to detect the need for a quota change. Belfast
decides the new quota in such a way that every shard, after
the quota change, would report roughly once every Tord .

4.5 Adding and Removing Shards Seamlessly
To meet the dynamic needs of applications, Belfast must be
able to add and remove shards, and do so without misspecula-
tions. The speculation window mechanism described above
provides a good substrate to achieve this goal. The idea is
that shards can be added or removed only at the speculation
window boundaries. The sequencing layer decides the new
quota assignments in the new window and the predetermined
cuts will now include the newly added shard or exclude the
removed shard. The only difference from Scalog’s seamless
elasticity is that shards must wait till the current speculation
window to end to join or leave. However, window sizes are
sufficiently small, such operations need not wait for long.

In Belfast, when a shard wishes to leave or join, it sends a
request to the sequencing layer. A leaving shard waits until the
current window is over and keeps meeting its quota until then.
A joining shard can demand a quota, which the sequencing
layer uses to determine the cuts for the new window with the
shard included; eventually, the quota is adjusted appropriately.

4.6 Mitigating Straggler Shards
Belfast’s mechanisms can help lagging shards catch up with
the rest of the system. However, a shard could be slow for
reasons other than it not being able to meet its quota. For
example, the network could delay the reports or the report-
ing thread could be de-scheduled for a long time. Belfast
must handle such straggler shards; otherwise appends and
confirmations for records at other shards will be delayed.

Belfast mitigates straggler shards by first detecting them
at the sequencer and then assigning their quotas to be zero
in the next speculation window, similar to the quota-change
mechanism. In the new window, the other shards can make
progress without waiting for the straggler. In the next window,
the straggler shard is given a small non-zero quota to see if
it can meet it in a timely manner. If it is able to meet, the
sequencer can ramp up the quota; otherwise, the shard is not
given quotas for the subsequent windows.

4.7 Reducing Latencies with Many Shards
Rate-based quotas, no-op filling, and lag fixes help reduce ap-
pend and confirmation latencies despite waiting for all shards
to adhere to a predetermined cut. However, with a large num-
ber of shards, if Belfast assigns quotas for all shards in all cuts,
then the possibility of actual cuts getting delayed because of
a few slow shards becomes high.

However, the basic fix-ante ordering framework does not
necessitate that all shards must report for all cuts. That is, the
predetermined cuts could be set such that some shards don’t
have to report records for a cut to be satisfied (i.e., their quota
can be 0 in that cut). The sequencer waits only for reports
from those shards that have a non-zero quota before it sends
the actual cut. Belfast leverages this fundamental property of
fix-ante ordering to keep latencies lower with many shards.
The idea is to “stagger” the cuts, where the sequencing layer

472 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

waits only for reports from a subset of shards to satisfy a cut
and waits for different subsets in different cuts.

Belfast’s current implementation realizes this idea via a
simple strategy, where shards are grouped into g groups. The
predetermined cuts are fixed such that the ith cut waits for
only shards in group i mod g. This enables the sequencer to
send the actual cuts without waiting for all shards but only a
subset for every cut, which reduces append and confirmation
latencies. More sophisticated policies can be used to stagger
the cuts (e.g., by assigning groups in a more dynamic manner);
we leave such policies to future work.

4.8 Failure Handling

Belfast retains Scalog’s behavior under sequencing-replica
failures: the system is unaffected by follower failures but
correctly remains unavailable until re-election if the primary
fails. Each storage shard is internally replicated and thus can
mask up to f failures. Belfast shards use primary-backup;
a consensus group can also be used. Thus, Belfast remains
unaffected in the presence of shard-internal failures as well.

Belfast’s operation, however, is affected when the shard as
a whole experiences a failure. This is a very rare scenario in
practice, that can occur when more than f replicas within a
shard crash or get partitioned, rendering the shard incapable
of masking internal failures. Belfast handles whole-shard fail-
ures via a view-change protocol. Belfast’s sequencing layer
triggers a view change when it suspects a shard has failed
(i.e., the shard is unresponsive to the sequencing layer’s lag-
fix instruction). During normal operation, Belfast stamps all
speculatively delivered records, actual cuts, and confirmations
with the view number. For correctness during whole-shard
failures, any records speculatively delivered in the old view
for which confirmations are pending must be failed.

We call the last position covered by the latest actual cut
sent in the old view the confirmed-gp; intuitively, records for
positions that precede confirmed-gp will not change. On a
view change, Belfast fails speculations for all positions after
confirmed-gp and informs the clients of the same. Clients
rollback their computation up to the confirmed-gp and then
re-consume records from the confirmed-gp and recompute.

To avoid re-sending the records from other alive shards or
reassigning their positions, Belfast optimizes the above pro-
cedure. Instead of excluding a failed shard, SF , immediately,
Belfast fills the log slots that belong to SF with no-ops for
the remainder of the current window. The sequencer assigns
this responsibility to an alive shard SA. With this, speculations
for all positions after confirmed-gp are failed and clients still
rollback. The only change is that the earlier delivered records
from other shards and their positions are retained at the clients’
buffers; SA then only delivers no-ops for positions belonging
to SF . SA also makes durable and includes these no-ops in its
reports. This helps all the shards make progress and eventu-
ally these positions will be confirmed. In the next window, SF
is excluded and SA no longer needs to fill no-ops. Note that SF

// compute thread state
var lastCompIdx uint64 // last computed log index

func HandleFailSpec(k uint64) {
pauseCompute()
for i := lastCompIdx; i > k; i-- {

undoStateChange(i)
}
lastCompIdx = min(k, lastCompIdx)
resumeCompute()

}

Figure 6: Application Rollback

will stop receiving actual cuts from the sequencing layer and
so it will not be able to confirm or acknowledge records for the
positions for which SA filled no-ops. Shard SA is also responsi-
ble for delivering failure notifications and mis-speculations to
clients on behalf of SF . Since all shards are made aware of SF
and SA from the sequencer through the actual cuts, clients that
were only connected to SF will eventually timeout waiting
for confirmations and get re-routed to shard SA to receive the
no-ops and confirmations. The client-side failure handling
logic, including the timeout and re-routing, is hidden within
the client library.

4.9 Implementation
We implemented Belfast by modifying open-source Sca-
log [7]. Our code is publicly available [8]. We introduce only
one additional RPC for shards to register with the sequencer
and join a Belfast cluster, while all other mechanisms, such as
lag-fix and quota change, are realized by piggybacking onto
existing RPCs (reports and cuts). Belfast makes all control
information (e.g., quotas) also fault tolerant at the sequencer
(without extra Paxos rounds). We set the window size to 100
cuts and ordering interval (Tord) to 1ms. We turn on staggered
cuts when we have more than 6 shards. To ensure progress,
shards begin to fill no-ops to satisfy their quota after 1.5×Tord
since the last report. To minimize the overhead of no-ops, we
coalesce consecutive no-ops in the shard-internal log into one
on-disk entry and one message for replication; thus, shards
can efficiently fill many no-ops.

5 Applications
We built three applications atop SpecLog to demonstrate

its viability. These applications run atop conventional shared
logs and can be ported to SpecLog’s interface with minimal
changes. The applications differ in sharding policies, down-
stream computations, and rollback actions.
IoT Intrusion Detection. Upstream sensors ingest readings
into the shared log; different groups of sensors ingest values
into different shards. There are many downstream tasks, one
per shard. Each task calculates moving statistics, stores them
in a local database, and raises alerts if they exceed a threshold
value (hinting an intrusion). The cross-shard ordering helps
establish the order of intrusion events across sensor groups.
With Belfast, a downstream task speculatively calculates the
statistics and writes them to a database, but waits for confir-

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 473

mation before it can raise an alert. If the speculation fails,
tasks revert their database writes and reset statistic values.

Fraud Monitoring. This application analyzes users’ transac-
tions to detect fraudulent activity. Each transaction is tagged
with the originating user’s id. Upstream components can in-
gest transactions into any shard (e.g., the nearest one). There
are several downstream tasks, each handling a subset of user-
ids. Unlike the previous application, here, each downstream
task consumes records from all shards but filters records based
on a predicate (user-id). Each task examines if a transaction
amount exceeds a threshold to raise alerts. The reader also
updates a local database with the running statistics for each
user and reverts this state if the speculation fails.

High-Frequency Trading. This application predicts the rela-
tionships between stocks based on their prices, which are then
used to create pair-trading strategies. Upstream components
update the real-time prices of stocks. Appenders can append
to any shard or map stock-ids to shards. Downstream tasks
subscribe to different stock-ids to receive live price data. Even
if incoming data is sharded by stock-id, global ordering across
shards is required, as downstream tasks must know the order
of price changes across stocks. Downstream tasks predict
price relationships via online linear regression. Stock prices
are used to update the weights of the model in batches. These
intermediate weights are stored in a database to create trad-
ing strategies. For rolling back, downstream tasks delete the
stored weights, recompute them, and insert the new weights.

Porting Applications to Belfast. For porting applications,
Belfast prescribes a few simple guidelines. Firstly, the appli-
cation must wait for confirmation before externalizing outputs
or taking actions. For example, the high-frequency trading
application must not execute trades or take decisions based
on unconfirmed results. Similarly, the fraud monitoring appli-
cation cannot flag a transaction as fraudulent until it receives
confirmations. Secondly, to deal with mis-speculations, ap-
plications have to maintain in-memory state of unconfirmed
changes made to the application state in-order to correctly im-
plement rollbacks. This in-memory state is small as there are
only a few computed but unconfirmed records at any time. For
example, in the fraud-monitoring application, each transaction
updates a few rows of the user statistics database, therefore,
for each unconfirmed application state change, the in-memory
state contains the list of updated rows and their old states.

Implementing these guidelines require minimal changes to
the application code for existing shared logs. This primarily
includes a thread subscribing to the speculation confirmation
or failure callbacks from Belfast and marking unconfirmed
results as ready, or performing rollbacks respectively. On re-
ceiving a fail_spec(k), the thread pauses compute, undoes
the state changes for unconfirmed modifications beyond index
k and instructs the compute thread to resume from that point
onwards. The code snippet in Figure 6 shows how rollbacks
are typically implemented with Belfast.

 0

 2

 4

2-shards
@20K

4-shards
@40K

Scalog Belfast

3.2X 3.5X

D
el

iv
er

y
 L

at
en

cy
 (

m
s)

(a) Avg. Delivery Latency

 0

 2

 4

 6

2-shards
@20K

4-shards
@40K

Scalog Belfast

1.6X 1.63X

E
2

E
 L

at
en

cy
 (

m
s)

(b) Avg. E2E Latency

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

Scalog Belfast

C
D

F

E2E Latency (ms)

(c) CDF of E2E Latency

Figure 7: Delivery and E2E Latency

6 Evaluation
Our evaluation answers the following questions:
• What are the e2e latency benefits of Belfast? (§6.1)
• How do the benefits vary with computation time? (§6.2)
• What are the overheads in append latency? (§6.3)
• How does lag-fix help Belfast with bursts? (§6.4)
• How does Belfast adapt to rate changes? (§6.5)
• How does the speculation lease window size affect Belfast?

(§6.6)
• Does Belfast enable seamless elasticity like Scalog? (§6.7)
• Does Belfast scale with shards while maintaining low laten-

cies? (§6.8)
• Does Belfast effectively handle stragglers? (§6.9)
• Do real-world applications benefit from Belfast? (§6.10)
• What is the impact of failures on applications with Belfast?

(§6.11)
Setup. We run our experiments on a CloudLab cluster. Each
machine has an Intel 10-Core E5-2640v4 CPU, 64GB DRAM,
a 25Gb ConnectX-4 NIC, and a SATA SSD. Belfast’s sequenc-
ing layer has one leader and two followers. Each shard has
one primary and one backup. Our main baseline is Scalog;
in some experiments, we also compare against variants of
Belfast. In Belfast, only the shard primary contacts the se-
quencer, reporting durable records; further, the reports adhere
to the fix-ante ordering. In the original Scalog implementa-
tion, both the shard primary and backup contact the sequencer,
which then determines which records are durable; also, the
shard servers report in a free-will manner. To correctly com-
pare fix-ante ordering and the free-will nature, we modify
Scalog so that only the primary reports durable records to the
sequencer. In all experiments, we use 4KB records and cal-
culate Belfast’s throughput by including only actual records
(because clients don’t have throughput benefit from no-ops).

474 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5

Scalog
Belfast

E
2
E

 L
at

en
cy

 (
m

s)

Compute Time (ms)

(a) E2E Latency

0 1 2 3 4 5 6
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

49 50 51
Compute Time (ms)

B
en

ef
it

 R
at

io
(b) Benefit Ratio

 0
 2
 4
 6
 8

 10

S B S B S B S B S B

S: Scalog
B: Belfast

0.5ms 1ms 1.5ms 2ms 4ms

Compute Time (ms)

E
2
E

 l
at

en
cy

 (
m

s)

Delivery
DownstreamQueue

DownstreamCompute
WaitForConfirm

 1.17X

1.43X

1.63X

1.54X

1.3X

(c) Latency Breakdown

Figure 8: Compute Time vs. E2E Latency Benefits

6.1 E2E Latency Benefits
We first demonstrate the fundamental benefit of early spec-
ulative delivery and fix-ante ordering. We run a workload
where upstream clients ingest records and downstream clients
consume and compute over them. For a batch of consumed
records, computation takes 1.5ms on average. We run with 2
and 4 shards and compare the delivery and e2e latencies of
Belfast and Scalog. As shown in Figure 7(a), Belfast delivers
records 3.2×-3.5× earlier than Scalog; downstream computa-
tion thus can speculatively start. Because of fix-ante ordering,
the speculated and the actual order of the delivered records
match. Thus, as shown in 7(b), Belfast reduces average e2e
latency by 1.6×; we also note improvements in p99 e2e laten-
cies (1.4× and 1.17× with 2 and 4 shards). Figure 7(c) shows
the e2e latency CDFs for Scalog and Belfast for 4 shards. In
contrast, Scalog delivers records only after global ordering,
leading to high delivery and e2e latencies.

6.2 Compute Time vs. E2E Latency
We next examine how compute time impacts e2e latency. We
run the same experiment as above with 4 shards but vary the
compute time. First, as shown in Figure 8(a), for all compute
times, Belfast offers lower e2e latency than Scalog. However,
as shown in 8(b), the benefit varies with compute time (e.g.,
1.17× with 0.5ms but 1.63× with 1.5ms compute).

We show why benefits vary with compute time by breaking
down the e2e latency (8(c)). In Scalog, e2e latency comprises
the time to deliver (Delivery), the time records wait in a down-
stream queue before they are picked for processing (Down-
streamQueue), and the compute time (DownstreamCompute).
In Belfast, additionally, tasks may have to wait for the order to
be confirmed (WaitForConfirm). First, when computation and
coordination effectively overlap (e.g., with 1.5ms compute),
Belfast offers the most benefit. Second, with shorter compute

(e.g., 0.5ms), the benefits decrease, because, although Belfast
delivers earlier, once compute finishes, it waits for a while
for the order to be confirmed. Next, as compute increases, the
wait time for confirmation reduces. However, when the com-
pute is long (4ms), compute exceeds ordering time, reducing
benefits. With very high compute times (50ms), the benefit
ratio approaches 1. Overall, with all compute times, Belfast of-
fers lower e2e latencies than Scalog; the benefit is maximized
when compute and coordination overlap effectively.

6.3 Append Latency
We now analyze Belfast’s append latency. We run a work-
load with a few upstream clients and measure the append
latency in Belfast and Scalog with 2, 4, and 10 shards. As
shown in Figure 9, Belfast does incur an overhead compared
to Scalog. This is due to the shards adhering to the quotas
and the sequencing layer waiting to satisfy the predetermined
cuts before it sends the actual cuts. However, mechanisms
like rate-aware quotas, no-op filling, lag fix, and staggered
cuts (for 10 shards as described in §4.9) help Belfast to keep
this overhead to a minimum (5.8% with 10 shards). This is a
small cost to pay for the significant reduction in e2e latencies,
which is critical for many real-time applications (§2.3).

6.4 Handling Bursts with Lag-Fix
We now analyze how Belfast behaves under bursts and the ef-
ficacy of lag-fix. We run a workload with an average compute
time of 0.8ms with two shards S1 and S2, and in the middle,
introduce a burst of client requests on S1 and measure e2e
latencies. We compare Belfast against Scalog and a Belfast
variant with lag-fix disabled (no-lf). As shown in Figure 10(a),
first, Belfast’s e2e latency is lower than Scalog throughout.
Second, lag-fix generally helps maintain low e2e latencies by
constantly fixing lagging shards. Third, lag-fix alleviates the
effect of bursts notably. When the burst starts, in no-lf, even
though S1 reports more frequently, S2 lags behind, delaying
confirmations and thus leading to high e2e latencies. The lag
persists even after the burst ends. In Belfast, while there is
a small increase in latencies when the burst starts (which is
also seen in Scalog), lag-fix kicks in, which helps S2 to catch
up and thus reduce latency. Figure 10(b) illustrates the lag-fix
behavior by showing the timing of reports in Belfast. Once
burst starts, S1 reports more frequently (blue circles); Belfast
detects S2’s lag and asks it to send more reports. S2 does so
(orange squares), resolving the lag.
Dealing with High Burstiness. As seen above, the lag-fix
mechanism helps Belfast handle small bursts, drops and vari-
ability well. However, repeated bursts could cause many lag-
fixes which can increase the load on the sequencing layer
and affect client latencies. In such high-burstiness scenarios,
Belfast can adopt a couple of techniques to remain perfor-
mant. One approach is for the sequencing layer to detect such
scenarios (based on the frequency of reports) and transition
the system into a “high-burstiness” mode, where shards are

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 475

 0

 2

 4

2 4 10
@20K @40K @100K

A
p
p
en

d
 L

at
en

cy
 (

m
s)

Shards

Scalog Belfast

Figure 9: Append La-
tencies

 0

 2

 4

 6

 8

 10

 0 30 60 90 120 150 180

E
2
E

 L
at

en
cy

 (
m

s)

Time (ms)

Burst start
Belfast no−lf

Belfast
Scalog

(a) E2E Latency

 0

 5

 10

 15

 20

 25

 30

 90 100 110

R
ep

o
rt

 n
u
m

b
er

Time (ms)

Burst start
Detected

Lag fixed
Shard 1
Shard 2

(b) Reports with Lag-Fix

Figure 10: Lag-Fix Benefits

 0

 5

 10

 15

 20

 0 5 10 15

T
h

ro
u

g
h

p
u

t
(K

O
p

s/
s)

Time (s)

Scalog
Belfast R

Belfast R no−qc
Belfast R+N

Belfast R+N no−qc

(a) Throughput

 0

 1

 2

 3

 4

 5

 0 5 10 15

E
2

E
 L

at
en

cy
 (

m
s)

Time (s)

Scalog
Belfast no−qc

Belfast

(b) E2ELatency

Figure 11: Quota Changes

 0

 1

 2

 3

 4

 5

 50 100 150 200 250 300

E2E Latency
Append LatencyL

at
en

cy
 (

m
s)

Window Size

Figure 12: Lease Window

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50

close-up

Join
New Window

Leave
Scalog

Belfast

T
h
ro

u
g
h
p
u
t

(K
O

p
s/

s)

Time (s)

 0
 3
 6
 9

 13 13.2 13.4

(a) Throughput

 0
 1
 2
 3
 4
 5
 6
 7

 0 10 20 30 40 50

Join
Leave

Scalog
Belfast

E
2
E

 L
at

en
cy

 (
m

s)

Time (s)

(b) E2E Latency

Figure 13: Seamless Elasticity

assigned quotas based on the peak of the bursts and are in-
structed to proactively fill no-ops to match the quota. Under
extreme scenarios, Belfast could also dynamically turn-off
fix-ante ordering and fall back to Scalog’s mode of operation.
We leave these approaches as an avenue for future work.

6.5 Changing Quotas Upon Rate Changes
We next examine Belfast’s behavior under rate changes using
the same setup as §6.4, but in the middle, we add sustained
load to S1, which increases its rate. We compare Belfast to
Scalog and a variant with quota-changes disabled but lag-
fix enabled (no-qc). Figure 11(a) shows the throughput. For
Belfast and no-qc, R+N is the throughput that includes both ac-
tual records and no-ops, while R includes only actual records.

Initially, when the rates are stable, no-ops are minimal in
both no-qc and Belfast, and they offer the same R and R+N
throughput. However, when the rate increases at S1, in no-
qc, lag-fix kicks in, which makes S2 fill in no-op records.
In no-qc, S1’s quota is not changed and it keeps reporting
more frequently to drain its “burst”. As a result, S2 keeps
filling more no-ops (as can be seen from the higher R+N
throughput for no-qc). In contrast, although initially Belfast
fills no-ops (due to lag-fix), it quickly adjusts the quota for S1
and thus S2 doesn’t fill many no-ops; thus, the no-op through-
out comes down, keeping R+N close to R†. We also noted
that in no-qc, the sequencer load was about 2× higher than
in Belfast (because of its sustained high-frequency reports).
Also, throughout, Belfast’s throughput (R) matches Scalog’s.

Figure 11(b) shows the e2e latency. Initially, both no-qc
and Belfast offer the same e2e latency. However, after the
rate change, no-qc suffers from higher e2e latencies because

†In all experiments, we noted no-ops added little overhead (N/R < 5%).

it takes a while to detect the lag and fill no-ops. In contrast,
Belfast by changing the quota of S1 to match its rate, avoids
this overhead, leading to lower e2e latencies. Throughout,
both Belfast and no-qc offer lower e2e latencies than Scalog.

6.6 Impact of Speculation Lease Window

We next examine the impact of the speculation lease window
size on Belfast. We run a stable workload with 2 shards at
20K throughput at 1.5ms compute with varying sizes for the
speculation lease window. As shown in Figure 12, very low
window sizes impact both e2e and append latencies. With low
window sizes, Belfast incurs frequent synchronization costs
where the shards are blocked waiting for the sequencing layer
to provide the quota for the next lease window. For instance,
we observe that with a window size of 5, the shards spend
about an entire ordering interval (Tord) at the end of each lease
window waiting for the next quota.

A large lease window size reduces the synchronization cost
significantly (∼0.07% of Tord at window size 100), however,
Belfast is slower to react. For instance, at 10K throughput
per shard, each shard reports 10 records on average every
Tord . Due to a transient drop, the ordering layer could assign a
quota of 9 to a shard, leaving it in an undesirable state where
the incoming rate exceeds the quota assigned for a very large
window. This consequently affects client latencies. Further-
more, with a large lease window size, Belfast would also be
slower to react to long term rate changes, incurring frequent
lagfixes (approximating the behaviour of the no-qc variant
in Figure 11). We see that a window size of 100 achieves
a good balance and works well for us. In all cases, the e2e
latency remains well under the 5.9ms value (see Figure 7(b))
for Scalog under the same workload.

476 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 25

 50

 75

 100

 0 2 4 6 8 10

Scalog
Belfast

T
h

ro
u

g
h

p
u

t
(K

O
p

s/
s)

Shards

(a) Throughput

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

Scalog (1.2ms)
Belfast (1.2ms)

E
2

E
 L

at
en

cy
 (

m
s)

Shards

(b) E2E Latency

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

Scalog
Belfast no−stagger

Belfast

C
D

F

E2E Latency (ms)

(c) E2E CDF (10-shards)

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350 400

Scalog (1.2ms)
Belfast (1.2ms)

Scalog (2ms)
Belfast (2ms)

E
2
E

 L
at

en
cy

 (
m

s)

Throughput (KOps/s)

(d) Emulation Latency vs. Throughput

Figure 14: Throughput and Latency vs. Shards

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500

E
2
E

 L
at

en
cy

 (
m

s)

Time (ms)

straggle starts
quota set to 0

quota reset
Belfast

Figure 15: Straggler Mitiga-
tion

 0

 2

 4

 6

 8

 10

S B S B S B

S: Scalog
B: Belfast

Intrusion
Detect

Fraud
Monitor

High-Freq
Trade

Delivery
DownstreamQueue

ApplicationCompute
WaitForConfirm

1.60X

 1.40X

1.42X

E
2

E
 l

at
en

cy
 (

m
s)

Figure 16: Applications

6.7 Seamless Elasticity
We next answer if Belfast offers elasticity without any down-
time like Scalog. We also examine if Belfast can do so without
causing misspeculations, thus continuing to offer low e2e la-
tency as shards are added and removed. We run an experiment
with two shards initially, add two shards on the fly, and then
remove them. Figure 13 shows the throughput and e2e latency.

First, as shown in 13(a), when shards are added or removed,
Belfast, like Scalog, has no downtime and no drop in through-
put. The only difference is that records from the new shards
are included only after the current speculation window ends,
thus the throughput increase comes a bit late. The close-up
shows this: Belfast’s throughput increase is delayed but only
slightly (< 100ms). Belfast also removes shards without down-
time. Next, as shown in 13(b), Belfast offers lower e2e latency
than Scalog even as shards are added and removed. This is be-
cause Belfast adds or removes shards at window boundaries,
which prevents misspeculations, keeping e2e latencies low.

6.8 Throughput and Latency vs. Shards
We next analyze if Belfast can scale throughput with shards
like Scalog while offering lower e2e latencies (with 1.2ms
compute). As shown in Figure 14(a), Belfast, like Scalog,
increases throughput with shards. Next, as shown in 14(b), it
does so while offering lower e2e latencies than Scalog (1.66×
and 1.4× with 2 and 10 shards). This is also evident from
the e2e latency distribution for 10 shards in 14(c). 14(c) also
shows the effect of staggered cuts, which helps Belfast to send
actual cuts without waiting for all shards; as shown, staggered
cuts improve latencies compared to the no-stagger variant.

To evaluate scalability beyond 10 shards, we build an em-
ulation framework similar to Scalog [29]. The framework

retains the sequencer and shard protocol, but the shards are
emulated. Emulated shards report records at the same through-
put and latency as real shards but do not receive actual records
from clients. Client perceived latency is obtained by adding a
delta measured from the real system to latencies measured at
the emulated shards. To measure e2e latency, along with the
compute, we add the time spent in the downstream queue as
obtained in the real experiments. As seen in 14(d), Belfast’s
throughput scales similarly to Scalog’s upto 40 shards. For
compute of 1.2ms, Belfast’s e2e latencies show a slope as they
are limited by the confirmation latencies. For higher compute
(2ms), Belfast is at a constant offset from Scalog. In all cases,
e2e latency benefits are retained even at 40 shards.

6.9 Mitigating Straggler Shards
We now examine if Belfast can mitigate straggler shards effec-
tively. In the middle of a workload, we inject delays into one
shard, which significantly delays its reports. Figure 15 shows
the e2e latency. When the shard starts to straggle, e2e latency
temporarily goes high. Once the shard repeatedly sends sig-
nificantly delayed reports, Belfast’s sequencer sets the quota
of the straggler shard to be zero for the next five windows,
and therefore the actual cuts can be sent without waiting for
the straggler, which reduces e2e latencies. Eventually, the
straggler’s quota is reset, and since we remove the injected
delay at this point, low e2e latency is maintained.

6.10 Benefits for End Applications
We now evaluate the applications from §5. In all applications,
several upstream components ingest data and downstream
tasks subscribe to shards according to the application’s shard-
ing policy (described in §5) and compute over the consumed
records. We run atop Scalog and Belfast, and measure ap-
plication e2e latencies. As shown in Figure 16, IoT intru-
sion detection attains the maximum benefit. The breakdown
shows that the average compute time for a batch of consumed
records in this application is around 1.4ms, which enables
almost the entire computation to be overlapped with shared
log’s coordination. The benefits are less pronounced in fraud
monitoring and high-frequency trading which have an average
compute time of 2.2ms and 800us, respectively. Thus, in fraud-
monitoring, confirmation arrives before computation finishes,

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 477

 0
 10
 20
 30
 40
 50
 60
 70

 28.6 28.8 29 29.2 29.4

Replica Fail
E2E Latency

E
2
E

 L
at

en
cy

 (
m

s)

Time (s)

 0

 4

 8

 12

 16

 28.6 28.8 29 29.2 29.4

Replica Fail
Throughput

T
h
ro

u
g
h
p
u
t

(K
O

p
s/

s)

Time (s)

(a) Shard Internal Failure

 0
 10
 20
 30
 40
 50
 60
 70

 28.6 28.8 29 29.2 29.4

Shard Fail
Detected

View change
E2E Latency

E
2
E

 L
at

en
cy

 (
m

s)

Time (s)

 0

 4

 8

 12

 16

 28.6 28.8 29 29.2 29.4

Shard Fail
Detected

View change
Throughput

T
h
ro

u
g
h
p
u
t

(K
O

p
s/

s)

Time (s)

(b) Shard Failure

 0

 10

 20

 30

 40

 50

 60

detect
view change

rollback

T
im

e
(m

s)

(c) Breakdown

Figure 17: Application under Failure

while, in HFT, downstream tasks wait for confirmation.

6.11 Application Behavior under Failures
Sequencing-replica failures do not change the behavior of
Belfast compared to Scalog. We thus evaluate the fraud-
monitoring application under two shard failure scenarios;
shard-replica failures and whole shard failures. We run the
shard-replica failure experiment with 3-way replicated shards
(f = 1) and kill a shard replica in the middle of the run. Fig-
ure 17(a) shows that the throughput and e2e latency remain
unaffected as the shard internally masks the failure. In the sec-
ond experiment, we run 2-way replicated shards and fail the
entire shard in the middle of the run. This scenario triggers
misspeculations, which the application handles by perform-
ing rollbacks (see §5). As shown in Figure 17(a), e2e latency
increases after the shard fails as misspeculations arise. How-
ever, once the view is changed and an alive shard fills no-ops
on behalf of the failed shard (§4.8), the latency becomes low
again. Similar behavior can also be seen with throughput. The
breakdown in Figure 17(c) shows that detecting the failure
takes up the most time between failure and recovery. More
importantly, the time spent by the application to rollback, i.e.,
undo the state changes and resume is marginal.

7 Related Work
Shared Logs. Corfu [16, 17] cannot seamlessly reconfigure
or flexibly place data, and has limited scalability. vCorfu [63]
offers flexible placement for readers but still has the other
problems. While Scalog [29], Boki [36], and FlexLog [32]
address the above problems via a durability-first design, they
do not enable low e2e latency, a critical need for applications.
Our work is the first to build a shared log that enables low e2e
latencies (while preserving the other properties). While we
focus on durability-first logs given their desirable properties,
Corfu-like logs also suffer from high e2e latencies. SpecLog’s
idea could enable such logs to offer low e2e latencies as well;
specifically, such a system can allow clients to speculatively
read ordered but non-durable records from the shard primary.

LazyLog [43], a recent shared log abstraction, reduces ap-
pend latencies by avoiding eager ordering upon appends.
However, LazyLog makes a crucial assumption that most
reads are decoupled in time from the appends. For the class
of applications we target, this assumption does not hold since
records are consumed as soon as they are ingested. Further-

more, LazyLog enforces ordering before reads and therefore
does not allow records to be delivered to downstream con-
sumers before ordering completes. In contrast, SpecLog al-
lows record delivery even before ordering is established and
hides this cost by overlapping ordering with downstream com-
putation. As a result, unlike SpecLog, the LazyLog abstraction
does not fundamentally help reduce e2e latencies which will
always include the cost of ordering.

Prior work [47] reduces subscription latency in pub-
sub [30] systems; however, it does not build upon total-order
shared logs or reduce e2e latencies.
Speculative Execution. Many distributed systems use spec-
ulation in other contexts like consensus [48], replicated
stores [33], blockchains [23], BFT [39, 65], distributed file
systems [45], transactions [57], atomic broadcast [38], and
MapReduce [22]. However, our work is the first to offer a
speculative interface for today’s total-order shared logs to
overlap their expensive coordination with application compu-
tation. More importantly, our work shows how to accurately
speculate positions via a novel fix-ante ordering scheme.
Pre-partitioning in Consensus. Protocols like Mencius [44,
64] overcome Paxos’ leader bottleneck by statically partition-
ing the consensus log across replicas. Each replica proposes
client commands or special skip commands (i.e., no-ops) in its
slots. While Belfast bears some similarity to these protocols
(predetermining slots, filling no-ops), it differs in key ways.
First, although Belfast’s fix-ante cuts effectively pre-partition
the shared log, these cuts are speculative in nature (unlike in
Mencius). Second, Mencius’s pre-partitioning is for replicas
within a shard, whereas fix-ante ordering predetermines an ex-
pected total order across many shards. Our work also differs in
context and purpose: Mencius-like systems pre-partition the
log to overcome the leader bottleneck in consensus, whereas
Belfast predetermines shared-log slots to enable speculative
delivery for low e2e latency in durability-first shared logs.

8 Conclusion
Today’s shared logs incur high delivery latency and thus can-
not enable low e2e latency, a critical need for applications.
SpecLog, a new shared-log abstraction, speculatively deliv-
ers records, thus overlapping computation and coordination.
Fix-ante ordering enables SpecLog to accurately speculate
positions before global ordering. We build Belfast based on
these ideas and show that it enables low e2e latencies for ap-
plications without sacrificing today’s shared logs’ properties.

Acknowledgments
We thank our shepherd and the OSDI ’25 reviewers for their
insightful comments. We also thank the other DASSL mem-
bers for their discussions and feedback. This material was
supported by funding from NSF grants CNS-2340218 and
CNS-2339784, an IIDAI grant, as well as a gift from Ne-
tApp. We also thank CloudLab [53] for providing a great
environment to run our experiments.

478 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Apache DistributedLog. https://github.com/apache/

distributedlog.

[2] Fighting Fraud in Real-Time: North’s Journey to
Smarter, Faster ML. https://www.tecton.ai/blog

/fighting-fraud-in-real-time-norths-journey-t

o-smarter-faster-ml/.

[3] Kafka Use Cases - Messaging. https://kafka.apache
.org/uses#uses_messaging.

[4] LogDevice: distributed storage for sequential data. ht
tps://logdevice.io/.

[5] Pravega: A Reliable Stream Storage System. https:

//cncf.pravega.io.

[6] Real-Time Analytics Explained. https://rockset.co

m/real-time-analytics-explained/.

[7] Scalog Github Repository. https://github.com/scalo
g.

[8] SpecLog Github Repository. https://github.com/das
sl-uiuc/speclog-artifact.

[9] The Cost of Latency in High-Frequency Trading. https:
//moallemi.com/ciamac/papers/latency-2009.pdf.

[10] The Milliseconds Market: The Money-Making on High-
Frequency Trading. https://fondexx.pro/blog/milli
seconds-market-money-making-high-frequency-tra

ding.

[11] The State of Streaming Data Report 2023-24. https:

//go.redpanda.com/state-of-streaming-data-repor

t-2023-24.

[12] TinyBird: How to Build a Real-Time Fraud Detection
System. https://www.tinybird.co/blog-posts/how-t
o-build-a-real-time-fraud-detection-system.

[13] Apache. Kakfa. http://kafka.apache.org/.

[14] Danial Asif. Building Faster Indexing with Apache
Kafka and Elasticsearch. https://careersatdoordash.
com/blog/open-source-search-indexing/.

[15] Gourav Singh Bais. How to detect fraudulent clicks in
a real-time ad system. https://www.redpanda.com/blo
g/detect-fraudulent-clicks-real-time-ads.

[16] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prab-
hakaran, Ted Wobber, Michael Wei, and John D. Davis.
CORFU: A Shared Log Design for Flash Clusters. In
Proceedings of the 9th Symposium on Networked Sys-
tems Design and Implementation (NSDI ’12), San Jose,
CA, April 2012.

[17] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber,
Ming Wu, Vijayan Prabhakaran, Michael Wei, John D
Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango:
Distributed Data Structures over a Shared Log. In Pro-
ceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP ’13), Farmington, Pennsylva-
nia, October 2013.

[18] Philip A Bernstein, Colin W Reid, and Sudipto Das.
Hyder – A Transactional Record Manager for Shared
Flash. In CIDR, volume 11, pages 9–20, 2011.

[19] Shruti Bhat and Kai Waehner. Real-Time Analytics
and Monitoring Dashboards with Apache Kafka and
Rockset. https://www.confluent.io/blog/analytic

s-with-apache-kafka-and-rockset/.

[20] Juxhin Dyrmishi Brigjaj. Using Redpanda to build a real-
time security IoT platform. https://www.redpanda.com
/blog/real-time-security-iot-customer-story.

[21] Navin Budhiraja, Keith Marzullo, Fred B Schneider, and
Sam Toueg. The Primary-backup Approach. Distributed
systems, 2, 1993.

[22] Qi Chen, Cheng Liu, and Zhen Xiao. Improving MapRe-
duce Performance Using Smart Speculative Execution
Strategy. IEEE Transactions on Computers, 63(4):954–
967, 2014.

[23] Yang Chen, Zhongxin Guo, Runhuai Li, Shuo Chen,
Lidong Zhou, Yajin Zhou, and Xian Zhang. Forerunner:
Constraint-based Speculative Transaction Execution for
Ethereum. In Proceedings of the 28th ACM Symposium
on Operating Systems Principles (SOSP ’21), Virtual,
October 2021.

[24] Confluent. Motion in Motion: Building an End-to-End
Motion Detection and Alerting System with Apache
Kafka and ksqlDB. https://www.confluent.io/blog/
build-real-time-iot-application-with-apache-kaf

ka-and-ksqldb/.

[25] Confluent. Real-Time Fraud Detection in Banking. ht
tps://assets.confluent.io/m/4d949142ef12c4c2/o

riginal/20230906-WP-Fraud_Detection.pdf.

[26] Dunith Danushka. Building a scalable IoT data process-
ing architecture with Redpanda. https://www.redpan

da.com/blog/streaming-data-platform-for-iot-edg

e/.

[27] Dunith Danushka. Understanding Event Stream Pro-
cessing. https://www.redpanda.com/blog/data-strea
ming-for-financial-services.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 479

https://github.com/apache/distributedlog
https://github.com/apache/distributedlog
https://www.tecton.ai/blog/fighting-fraud-in-real-time-norths-journey-to-smarter-faster-ml/
https://www.tecton.ai/blog/fighting-fraud-in-real-time-norths-journey-to-smarter-faster-ml/
https://www.tecton.ai/blog/fighting-fraud-in-real-time-norths-journey-to-smarter-faster-ml/
https://kafka.apache.org/uses#uses_messaging
https://kafka.apache.org/uses#uses_messaging
https://logdevice.io/
https://logdevice.io/
https://cncf.pravega.io
https://cncf.pravega.io
https://rockset.com/real-time-analytics-explained/
https://rockset.com/real-time-analytics-explained/
https://github.com/scalog
https://github.com/scalog
https://github.com/dassl-uiuc/speclog-artifact
https://github.com/dassl-uiuc/speclog-artifact
https://moallemi.com/ciamac/papers/latency-2009.pdf
https://moallemi.com/ciamac/papers/latency-2009.pdf
https://fondexx.pro/blog/milliseconds-market-money-making-high-frequency-trading
https://fondexx.pro/blog/milliseconds-market-money-making-high-frequency-trading
https://fondexx.pro/blog/milliseconds-market-money-making-high-frequency-trading
https://go.redpanda.com/state-of-streaming-data-report-2023-24
https://go.redpanda.com/state-of-streaming-data-report-2023-24
https://go.redpanda.com/state-of-streaming-data-report-2023-24
https://www.tinybird.co/blog-posts/how-to-build-a-real-time-fraud-detection-system
https://www.tinybird.co/blog-posts/how-to-build-a-real-time-fraud-detection-system
http://kafka.apache.org/
https://careersatdoordash.com/blog/open-source-search-indexing/
https://careersatdoordash.com/blog/open-source-search-indexing/
https://www.redpanda.com/blog/detect-fraudulent-clicks-real-time-ads
https://www.redpanda.com/blog/detect-fraudulent-clicks-real-time-ads
https://www.confluent.io/blog/analytics-with-apache-kafka-and-rockset/
https://www.confluent.io/blog/analytics-with-apache-kafka-and-rockset/
https://www.redpanda.com/blog/real-time-security-iot-customer-story
https://www.redpanda.com/blog/real-time-security-iot-customer-story
https://www.confluent.io/blog/build-real-time-iot-application-with-apache-kafka-and-ksqldb/
https://www.confluent.io/blog/build-real-time-iot-application-with-apache-kafka-and-ksqldb/
https://www.confluent.io/blog/build-real-time-iot-application-with-apache-kafka-and-ksqldb/
https://assets.confluent.io/m/4d949142ef12c4c2/original/20230906-WP-Fraud_Detection.pdf
https://assets.confluent.io/m/4d949142ef12c4c2/original/20230906-WP-Fraud_Detection.pdf
https://assets.confluent.io/m/4d949142ef12c4c2/original/20230906-WP-Fraud_Detection.pdf
https://www.redpanda.com/blog/streaming-data-platform-for-iot-edge/
https://www.redpanda.com/blog/streaming-data-platform-for-iot-edge/
https://www.redpanda.com/blog/streaming-data-platform-for-iot-edge/
https://www.redpanda.com/blog/data-streaming-for-financial-services
https://www.redpanda.com/blog/data-streaming-for-financial-services

[28] Alex Davies. Jump Trading Drives Faster Insights at
Scale with Redpanda. https://thenewstack.io/jum

p-trading-drives-faster-insights-at-scale-wit

h-redpanda/.

[29] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo
Alvisi, and Robbert Van Renesse. Scalog: Seamless Re-
configuration and Total Order in a Scalable Shared Log.
In Proceedings of the 17th Symposium on Networked
Systems Design and Implementation (NSDI ’20), Santa
Clara, CA, February 2020.

[30] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui,
and Anne-Marie Kermarrec. The many faces of publish/-
subscribe. ACM computing surveys (CSUR), 35(2):114–
131, 2003.

[31] Expeed. Get Real-Time IOT Data Analytics Using
Apache Kafka And Apache Spark. https://expeed

.com/get-real-time-iot-data-analytics-using-apa

che-kafka-and-apache-spark/.

[32] Dimitra Giantsidi, Emmanouil Giortamis, Nathaniel
Tornow, Florin Dinu, and Pramod Bhatotia. Flexlog:
A shared log for stateful serverless computing. pages
195–209, 08 2023.

[33] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian
Seredinschi. Incremental Consistency Guarantees for
Replicated Objects. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Imple-
mentation (OSDI ’16), Savannah, GA, November 2016.

[34] Himanshu Gupta. Unlocking a Competitive Edge in
Hedge-fund Trading, Right Down to the Data Specifics.
https://www.rtinsights.com/unlocking-a-competi

tive-edge-in-hedge-fund-trading-right-down-t

o-the-data-specifics/.

[35] Maurice P. Herlihy and Jeannette M. Wing. Lineariz-
ability: A Correctness Condition for Concurrent Objects.
ACM Trans. Program. Lang. Syst., 12(3), July 1990.

[36] Zhipeng Jia and Emmett Witchel. Boki: Stateful Server-
less Computing with Shared Logs. In Proceedings of the
28th ACM Symposium on Operating Systems Principles
(SOSP ’21), Virtual, October 2021.

[37] Joe Karlsson. Event sourcing with Kafka. https://www.
tinybird.co/blog-posts/event-sourcing-with-kaf

ka.

[38] Bettina Kemme, Fernando Pedone, Gustavo Alonso, and
André Schiper. Processing transactions over optimistic
atomic broadcast protocols. In International Symposium
on Distributed Computing (DISC 99), Bratislava, Slovak
Republic, September 1999.

[39] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: Speculative
Byzantine Fault Tolerance. In ACM SIGOPS Operating
Systems Review, volume 41, pages 45–58. ACM, 2007.

[40] Leslie Lamport. Paxos Made Simple. ACM Sigact News,
32(4):18–25, 2001.

[41] Joey Lei. Leveraging Modern Services to Drive Busi-
ness Agility, Elasticity, and Mobility. https://www.rt
insights.com/modern-services-drive-business-agi

lity-elasticity-mobility/.

[42] Jacob Loveless, Sasha Stoikov, and Rolf Waeber. Online
Algorithms in High-Frequency Trading. Communica-
tions of the ACM, 56(10):50–56, 2013.

[43] Xuhao Luo, Shreesha G. Bhat, Jiyu Hu, Ramnatthan
Alagappan, and Aishwarya Ganesan. Lazylog: A new
shared log abstraction for low-latency applications. In
Proceedings of the ACM SIGOPS 30th Symposium on
Operating Systems Principles, SOSP ’24, page 296–312,
New York, NY, USA, 2024. Association for Computing
Machinery.

[44] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo.
Mencius: Building efficient replicated state machines
for wans. In Proceedings of the 8th Symposium on
Operating Systems Design and Implementation (OSDI
’08), San Diego, CA, December 2008.

[45] Edmund B Nightingale, Peter M Chen, and Jason Flinn.
Speculative Execution in a Distributed File System. Oc-
tober 2005.

[46] Artem Oppermann. Detecting fraud in real time using
Redpanda and Pinecone. https://www.redpanda.com/b
log/fraud-detection-pipeline-redpanda-pinecone.

[47] Filipa Pedrosa and Luís Rodrigues. Reducing the sub-
scription latency in reliable causal publish-subscribe
systems. In Proceedings of the 36th Annual ACM Sym-
posium on Applied Computing, pages 203–212, 2021.

[48] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma,
and Arvind Krishnamurthy. Designing Distributed Sys-
tems Using Approximate Synchrony in Data Center
Networks. In Proceedings of the 12th Symposium on
Networked Systems Design and Implementation (NSDI
’15), Oakland, CA, May 2015.

[49] Shyam Purkayastha. Building a real-time data process-
ing pipeline for IoT. https://www.redpanda.com/blog/
analyzing-iot-telemetry-data-apache-spark.

[50] RedPanda. RedPanda. https://redpanda.com/.

480 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://thenewstack.io/jump-trading-drives-faster-insights-at-scale-with-redpanda/
https://thenewstack.io/jump-trading-drives-faster-insights-at-scale-with-redpanda/
https://thenewstack.io/jump-trading-drives-faster-insights-at-scale-with-redpanda/
https://expeed.com/get-real-time-iot-data-analytics-using-apache-kafka-and-apache-spark/
https://expeed.com/get-real-time-iot-data-analytics-using-apache-kafka-and-apache-spark/
https://expeed.com/get-real-time-iot-data-analytics-using-apache-kafka-and-apache-spark/
https://www.rtinsights.com/unlocking-a-competitive-edge-in-hedge-fund-trading-right-down-to-the-data-specifics/
https://www.rtinsights.com/unlocking-a-competitive-edge-in-hedge-fund-trading-right-down-to-the-data-specifics/
https://www.rtinsights.com/unlocking-a-competitive-edge-in-hedge-fund-trading-right-down-to-the-data-specifics/
https://www.tinybird.co/blog-posts/event-sourcing-with-kafka
https://www.tinybird.co/blog-posts/event-sourcing-with-kafka
https://www.tinybird.co/blog-posts/event-sourcing-with-kafka
https://www.rtinsights.com/modern-services-drive-business-agility-elasticity-mobility/
https://www.rtinsights.com/modern-services-drive-business-agility-elasticity-mobility/
https://www.rtinsights.com/modern-services-drive-business-agility-elasticity-mobility/
https://www.redpanda.com/blog/fraud-detection-pipeline-redpanda-pinecone
https://www.redpanda.com/blog/fraud-detection-pipeline-redpanda-pinecone
https://www.redpanda.com/blog/analyzing-iot-telemetry-data-apache-spark
https://www.redpanda.com/blog/analyzing-iot-telemetry-data-apache-spark
https://redpanda.com/

[51] Redpanda. Understanding event stream processing. ht
tps://www.redpanda.com/guides/event-stream-pro

cessing-event-sourcing-database.

[52] Dheeraj Remella. How Volt and RedPanda Help Compa-
nies Take Real-Time Actions on Streaming Data. https:
//www.voltactivedata.com/blog/2023/09/volt-red

panda-real-time-actions-on-streaming-data/.

[53] Robert Ricci, Eric Eide, and CloudLab Team. Introduc-
ing CloudLab: Scientific infrastructure for advancing
cloud architectures and applications. USENIX ;login:,
39(6), 2014.

[54] Rockset. Real-Time Analytics on Kafka. https://rock
set.com/sql-on-kafka/.

[55] Raj Sagiraju. Simple, fast, and scalable serverless stream
processing with DeltaStream and Redpanda. https:

//www.redpanda.com/blog/simple-fast-scalable-s

tream-processing-deltastream.

[56] Salvatore Salamone. Enabling Real-time Analytics At-
Scale Use Cases. https://www.rtinsights.com/enabl
ing-real-time-analytics-at-scale-use-cases/.

[57] Weihai Shen, Ansh Khanna, Sebastian Angel, Sid-
dhartha Sen, and Shuai Mu. Rolis: a software approach
to efficiently replicating multi-core transactions. In Pro-
ceedings of the Seventeenth European Conference on
Computer Systems, EuroSys ’22, page 69–84, 2022.

[58] Gang Tao. Case Study: Real-time Fleet Monitoring with
Timeplus. https://www.timeplus.com/post/case-stu
dy-real-time-fleet-monitoring-with-timeplus.

[59] Gang Tao. Realizing low latency streaming analytics
with Timeplus and Redpanda. https://redpanda.com

/blog/low-latency-streaming-analytics-timeplu

s-redpanda.

[60] Rajkumar Venkatasamy. Building a real-time search
application with Redpanda and ZincSearch. https:

//www.redpanda.com/blog/real-time-data-search-r

edpanda-zincsearch.

[61] VMWare. CorfuDB. https://github.com/CorfuDB/C

orfuDB.

[62] Kai Waehner. Fraud Detection with Apache Kafka,
KSQL and Apache Flink. https://www.kai-waehner.d
e/blog/2022/10/25/fraud-detection-with-apache-k

afka-ksql-and-apache-flink/.

[63] Michael Wei, Amy Tai, Christopher J. Rossbach, Ittai
Abraham, Maithem Munshed, Medhavi Dhawan, Jim
Stabile, Udi Wieder, Scott Fritchie, Steven Swanson,
Michael J. Freedman, and Dahlia Malkhi. vcorfu: a
cloud-scale object store on a shared log. In Proceed-
ings of the 14th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’17, page 35–49,
USA, 2017. USENIX Association.

[64] Wei Wei, Harry Tian Gao, Fengyuan Xu, and Qun Li.
Fast mencius: Mencius with low commit latency. In
2013 Proceedings IEEE INFOCOM, pages 881–889.
IEEE, 2013.

[65] Benjamin Wester, James A Cowling, Edmund B Nightin-
gale, Peter M Chen, Jason Flinn, and Barbara Liskov.
Tolerating Latency in Replicated State Machines
Through Client Speculation. In Proceedings of the 6th
Symposium on Networked Systems Design and Imple-
mentation (NSDI ’09), Boston, MA, April 2009.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 481

https://www.redpanda.com/guides/event-stream-processing-event-sourcing-database
https://www.redpanda.com/guides/event-stream-processing-event-sourcing-database
https://www.redpanda.com/guides/event-stream-processing-event-sourcing-database
https://www.voltactivedata.com/blog/2023/09/volt-redpanda-real-time-actions-on-streaming-data/
https://www.voltactivedata.com/blog/2023/09/volt-redpanda-real-time-actions-on-streaming-data/
https://www.voltactivedata.com/blog/2023/09/volt-redpanda-real-time-actions-on-streaming-data/
https://rockset.com/sql-on-kafka/
https://rockset.com/sql-on-kafka/
https://www.redpanda.com/blog/simple-fast-scalable-stream-processing-deltastream
https://www.redpanda.com/blog/simple-fast-scalable-stream-processing-deltastream
https://www.redpanda.com/blog/simple-fast-scalable-stream-processing-deltastream
https://www.rtinsights.com/enabling-real-time-analytics-at-scale-use-cases/
https://www.rtinsights.com/enabling-real-time-analytics-at-scale-use-cases/
https://www.timeplus.com/post/case-study-real-time-fleet-monitoring-with-timeplus
https://www.timeplus.com/post/case-study-real-time-fleet-monitoring-with-timeplus
https://redpanda.com/blog/low-latency-streaming-analytics-timeplus-redpanda
https://redpanda.com/blog/low-latency-streaming-analytics-timeplus-redpanda
https://redpanda.com/blog/low-latency-streaming-analytics-timeplus-redpanda
https://www.redpanda.com/blog/real-time-data-search-redpanda-zincsearch
https://www.redpanda.com/blog/real-time-data-search-redpanda-zincsearch
https://www.redpanda.com/blog/real-time-data-search-redpanda-zincsearch
https://github.com/CorfuDB/CorfuDB
https://github.com/CorfuDB/CorfuDB
https://www.kai-waehner.de/blog/2022/10/25/fraud-detection-with-apache-kafka-ksql-and-apache-flink/
https://www.kai-waehner.de/blog/2022/10/25/fraud-detection-with-apache-kafka-ksql-and-apache-flink/
https://www.kai-waehner.de/blog/2022/10/25/fraud-detection-with-apache-kafka-ksql-and-apache-flink/

	Introduction
	Motivation
	State-of-the-Art Shared Logs: Background
	High Delivery Latency in Today's Shared Logs
	Demand for Low E2E Latency

	SpecLog and Fix-Ante Ordering
	SpecLog Abstraction
	Fix-Ante Ordering

	Belfast Design and Implementation
	Basic Operation
	Rate-based Quotas
	Handling Bursts and Drops via Lag Fix
	Speculation Lease Windows
	Adding and Removing Shards Seamlessly
	Mitigating Straggler Shards
	Reducing Latencies with Many Shards
	Failure Handling
	Implementation

	Applications
	Evaluation
	E2E Latency Benefits
	Compute Time vs. E2E Latency
	Append Latency
	Handling Bursts with Lag-Fix
	Changing Quotas Upon Rate Changes
	Impact of Speculation Lease Window
	Seamless Elasticity
	Throughput and Latency vs. Shards
	Mitigating Straggler Shards
	Benefits for End Applications
	Application Behavior under Failures

	Related Work
	Conclusion

