
Brief Announcement: Automating and
Mechanising Cutoff Proofs for Parameterized
Verification of Distributed Protocols
Shreesha G. Bhat #

Indian Institute of Technology Madras, India

Kartik Nagar #

Indian Institute of Technology Madras, India

Abstract
We propose a framework to automate and mechanize simulation-based proofs of cutoffs for pa-
rameterized verification of distributed protocols. We propose a strategy to derive the simulation
relation given the cutoff instance and encode the correctness of the simulation relation as a formula
in first-order logic. We have successfully applied our approach on a number of distributed protocols.

2012 ACM Subject Classification Software and its engineering → Software verification

Keywords and phrases Formal Methods, Automated Verification, Distributed Protocols

Digital Object Identifier 10.4230/LIPIcs.DISC.2021.48

Related Version Full Version: https://github.com/shreesha00/DISC2021-Brief-Announcement-
Automating-and-Mechanising-Cutoff-Proofs-for-Parameterized-Verification

Funding This work was supported by the Young Research Fellow Program at IITM.

1 Introduction

The problem of parameterized verification [1] of distributed protocols asks whether a protocol
satisfies its specification for all values of the parameter. Here, the parameter is typically
the number of nodes involved in the protocol. Cutoff based approaches for parameterized
verification rely on the following observation: If the protocol can break its specification for
some value of the parameter, it is guaranteed to break the specification for a value ≤ k,
where k is also called the cutoff. Small cutoffs can then enable fully automated verification,
for example by exhaustively model checking all instances of the protocol of size ≤ k.

In the recent past, there has been a lot of interest in automated and mechanised verification
of distributed protocols [11, 4, 12, 7, 9, 10]. Most of these approaches rely on constructing
and proving some form of inductive invariant. While previous works have also attempted to
use cut-off based approaches for verification [3, 6, 8, 1], they have mostly been limited to
either a restricted class of protocols [6] or a restricted class of specifications [8]. In this work,
we develop a methodology for mechanising simulation-based proofs of cutoffs by observing
that the simulation relation can be generated using a direct correspondence between the
nodes of an arbitrarily large system and the cutoff instance. We have successfully applied
the proposed approach on a variety of distributed protocols.

2 Proposed Technique with Example

Model. We consider distributed protocols modelled in RML [11] where the system state is
represented by a set of relations. The communication model between nodes is assumed to be
asynchronous message passing. A set of actions are defined with guards and each step of the
protocol involves non-deterministically firing one of these actions in an atomic fashion. The

© Shreesha G. Bhat and Kartik Nagar;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 48; pp. 48:1–48:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cs18b103@smail.iitm.ac.in
mailto:nagark@cse.iitm.ac.in
https://doi.org/10.4230/LIPIcs.DISC.2021.48
https://github.com/shreesha00/DISC2021-Brief-Announcement-Automating-and-Mechanising-Cutoff-Proofs-for-Parameterized-Verification
https://github.com/shreesha00/DISC2021-Brief-Announcement-Automating-and-Mechanising-Cutoff-Proofs-for-Parameterized-Verification
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Brief Announcement: Automating Cutoff Proofs

specification for the protocol is given as a safety property. The parameterized verification
problem then asks whether for all instances of the protocol, does the specification hold at
every step. We are interested in a cutoff on the number of nodes. As an example protocol,
we consider Leader Election in a Ring as given in [11]. The system consists of a finite number
of nodes in a ring setting. Each node has a unique ID, and there is a total order on the
IDs. There are two actions, (1) generate(N, ID(N), NG(N)): Node N sends a message
ID(N) to its neighbour NG(N) and (2) handle_message(N, m, NG(N)): Node N takes a
pending message m in its pending queue (denoted by pnd) and forwards it to its neighbour
only if m > ID(N), else if m = ID(N), N is elected as a leader (denoted by leader). The
specification for the protocol is that there is at most one leader.

Inputs. We assume that the protocol designer provides the proposed framework with, (1)
The protocol description, (2) A cutoff instance, (3) A mapping from nodes of any arbitrary
system to nodes of the cutoff instance given by sim, (4) Two functions Ω and τ as described
below. Let C be the cutoff instance and MC the set of nodes in C. Consider an arbitrary
instance L of the protocol where ML is the set of nodes in L such that |ML| > |MC |. The
mapping function sim has the following meaning, for each node NL ∈ ML, NL is simulated
by sim(NL) ∈ MC . The key intuition here is that a node NC ∈ MC effectively maintains
the state components relevant to the violation of the safety property for all nodes NL ∈ ML

such that sim(NL) = NC . To show that |MC | is the cutoff, we will show that for some
sequence of actions which leads to the first violation of the specification in any instance L of
size |ML| > |MC |, there also exists a sequence of actions in the cutoff system of size |MC |
which leads to a violation. Specifically, for the example of Leader Election, for any arbitrary
size system L with at least two nodes where nodes LA and LB (IDs A and B) are elected as
leaders, we consider a cutoff system of size 2 with nodes CA and CB with the same IDs. The
sim function is such that nodes in the portion of the ring in-between LA and LB (in the
direction of communication) including LB are simulated by CB and the rest of the nodes in
L are simulated by CA.

Simulation Relation. Our observation is that a generic form of the simulation relation can
be given in-terms of the sim function. Let σL and σC denote the states of two instances L

and C respectively. We can in general view σX as a function from nodes of the instance to
state components. The simulation R between states maintains the property that all effects
of actions that can contribute to a violation and are present in the state of a node in L must
be present in the state of its simulating node in C. This can be mathematically stated as
follows:

(σL, σC) ∈ R ⇔ ∀N ∈ ML. Ω(σL(N)) ⊆ σC(sim(N))

The relation uses the function Ω, which filters out those state components (i.e. effects of
actions) which do not contribute in any way to the violation of the specification. With respect
to our example of Leader Election, the above general strategy translates to the following,

(σL, σC) ∈ R ⇐⇒ ∀N ∈ ML. (leaderL(LA) → leaderC(CA)) ∧ (leaderL(LB) → leaderC(CB))

∧ (¬leaderL(LA) ∧ pndL(A, N) → pndC(A, sim(N)))

∧ (¬leaderL(LB) ∧ pndL(B, N) → pndC(B, sim(N)))

Lock Step. The lock-step describes the action(s) taken in C for every action taken in L.
The generic strategy behind the lock-step is that actions involving any two nodes L1 and L2
in L are translated to actions involving sim(L1) and sim(L2) in C. Note that this might

S. G. Bhat and K. Nagar 48:3

result in some steps where sim(L1) = sim(L2), which represents a stuttering step where
L transitions according to the action but C stays in the same state. Stuttering steps can
also occur when L performs some action that C cannot perform. Similarly, a single action
in L might need to be simulated by more than one action in C. This behaviour can be
encapsulated in a function τ . In general, action a in L is translated to τ(a) in C, where τ(a)
can be a sequence of zero or more actions where zero actions represents a stuttering step. In
our example of leader election, the lockstep relation τ is defined as follows:

τ(generateL(LA, A, NG(LA))) = generateC(CA, A, CB)

τ(handle_messageL(LA, A, NG(LA))) = handle_messageC(CA, A, CB)

τ(handle_messageL(LA, B, NG(LA))) = handle_messageC(CA, B, CB)generateC(CB , B, CA).

Note that the second action is required to maintain the simulation relation. Apart from
these, the symmetric versions with A and B interchanged are also included in the lockstep.

FOL Encoding & Theorem. To prove that the simulation relation holds at each step,
we show that it is an inductive invariant of the combined instances L and C. Given FOL
encoding of the states and actions of the protocol, we construct the following FOL formula
to check the correctness of the simulation relation:

(σL, σC) ∈ R ∧ a(σL, σ′
L) ∧ τ(a)(σC , σ′

C) ∧ (σ′
L, σ′

C) /∈ R (1)

Here, a can be any of the actions possible in L according to the protocol description, and we
use the notation a(σX , σ′

X) to denote the change in state after the action.
We construct a FOL encoding consisting of the protocol states, actions and the simulation

relation along with the formula 1. If the resulting formula is UNSAT, then the simulation
relation holds at every step. Note that we are only interested in the first violation of the
specification in any arbitrary instance, because once a single violation occurs, the specification
is broken and the protocol is incorrect, therefore, if Φ denotes the specification, we also
conjunct Φ(σL) and Φ(σC) to the above formula. We also need to show that violations would
be preserved by the simulation relation:

¬Φ(σL) ∧ R(σL, σC) ∧ Φ(σC) (2)

▶ Theorem 1. If the formulae 1 and 2 are unsatisfiable, and if the cutoff instance C does
not violate the specification Φ, then no instance of the protocol violates Φ.

3 Experiments and Future Work

The tool implementing the ideas described in the paper is still a work-in-progress. However,
we have some positive preliminary results: we have been able to verify the leader election
protocol and the significantly more complicated sharded key-value store protocol [4]. We
use Z3 [2] as a back-end SMT solver, and in both cases, the verification time is in the order
of a few seconds. In addition, we have manually checked the correctness of our approach
on a variety of other protocols: Lock Service [13], Learning Switch [11], Distributed Lock
Service [5]. As part of future work, we plan to finish the tool and apply our method on
more complex protocols. In addition, we also want to leverage our observation regarding
the relation between the cutoff instance and violations of the specification to automatically
synthesize the cutoff instance.

To conclude, in this work, we have proposed an approach to significantly simplify and
automate cut-off based proofs for verification of distributed protocols. Our experience is that
cutoff-based proofs can be applied to a large number of distributed protocols, and we hope
that this work would pave the way for more widespread application of this proof technique.

DISC 2021

48:4 Brief Announcement: Automating Cutoff Proofs

References
1 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, and

Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, 2015.

2 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In TACAS,
volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

3 E. Allen Emerson and Kedar S. Namjoshi. Reasoning about rings. In POPL, pages 85–94.
ACM Press, 1995.

4 Yotam M. Y. Feldman, James R. Wilcox, Sharon Shoham, and Mooly Sagiv. Inferring inductive
invariants from phase structures. In CAV (2), volume 11562 of Lecture Notes in Computer
Science, pages 405–425. Springer, 2019.

5 Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.
Roberts, Srinath T. V. Setty, and Brian Zill. Ironfleet: proving practical distributed systems
correct. In SOSP, pages 1–17. ACM, 2015.

6 Nouraldin Jaber, Swen Jacobs, Christopher Wagner, Milind Kulkarni, and Roopsha Samanta.
Parameterized verification of systems with global synchronization and guards. In CAV (1),
volume 12224 of Lecture Notes in Computer Science, pages 299–323. Springer, 2020.

7 Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem A.
Sakallah. I4: incremental inference of inductive invariants for verification of distributed
protocols. In SOSP, pages 370–384. ACM, 2019.

8 Ognjen Maric, Christoph Sprenger, and David A. Basin. Cutoff bounds for consensus algorithms.
In CAV (2), volume 10427 of Lecture Notes in Computer Science, pages 217–237. Springer,
2017.

9 Kenneth L. McMillan and Oded Padon. Ivy: A multi-modal verification tool for distributed
algorithms. In CAV (2), volume 12225 of Lecture Notes in Computer Science, pages 190–202.
Springer, 2020.

10 Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos made EPR: decidable
reasoning about distributed protocols. Proc. ACM Program. Lang., 1(OOPSLA):108:1–108:31,
2017.

11 Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. Ivy:
safety verification by interactive generalization. In PLDI, pages 614–630. ACM, 2016.

12 Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv, Sharon
Shoham, James R. Wilcox, and Doug Woos. Modularity for decidability of deductive verification
with applications to distributed systems. In PLDI, pages 662–677. ACM, 2018.

13 James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.
Ernst, and Thomas E. Anderson. Verdi: a framework for implementing and formally verifying
distributed systems. In PLDI, pages 357–368. ACM, 2015.

	1 Introduction
	2 Proposed Technique with Example
	3 Experiments and Future Work

